18 research outputs found

    PKD Phosphorylation as Novel Pathway of K<sub>V</sub>11.1 Regulation

    No full text
    Background/Aims: The voltage-gated potassium channel KV11.1 has been originally cloned from the brain and is expressed in a variety of tissues. The role of phosphorylation for channel function is a matter of debate. In this study, we aimed to elucidate the extent and role of protein kinase D mediated phosphorylation. Methods: We employed mass spectrometry, whole-cell patch clamp electrophysiology, confocal microscopy, site-directed mutagenesis, and western blotting. Results: Using brain tissue from rat and mouse, we mapped several phosphorylated KV11.1 residues by LC-MS mass spectrometry and identified protein kinase D (PKD1) as possible regulatory kinase. Co-expression of KV11.1 with PKD1 reduced current amplitudes without altering protein levels or surface expression of the channel. Based on LC-MS results from in vivo and HEK293 cell experiments we chose four KV11.1 mutant candidates for further functional analysis. Ablation of the putative PKD phosphorylation site in the mutant S284A increased the maximal current indicating S284 as a main PKD target in KV11.1. Conclusions: Our data might help mitigating a long-standing controversy in the field regarding PKC regulation of KV11.1. We propose that PKD1 mediates the PKC effects on KV11.1 and we found that PKD targets S284 in the N-terminus of the channel

    A phosphoinositide 3-kinase (PI3K)-serum- and glucocorticoid-inducible kinase 1 (SGK1) pathway promotes Kv7.1 channel surface expression by inhibiting Nedd4-2 protein

    No full text
    Epithelial cell polarization involves several kinase signaling cascades that eventually divide the surface membrane into an apical and a basolateral part. One kinase, which is activated during the polarization process, is phosphoinositide 3-kinase (PI3K). In MDCK cells, the basolateral potassium channel Kv7.1 requires PI3K activity for surface-expression during the polarization process. Here, we demonstrate that Kv7.1 surface expression requires tonic PI3K activity as PI3K inhibition triggers endocytosis of these channels in polarized MDCK. Pharmacological inhibition of SGK1 gave similar results as PI3K inhibition, whereas overexpression of constitutively active SGK1 overruled it, suggesting that SGK1 is the primary downstream target of PI3K in this process. Furthermore, knockdown of the ubiquitin ligase Nedd4-2 overruled PI3K inhibition, whereas a Nedd4-2 interaction-deficient Kv7.1 mutant was resistant to both PI3K and SGK1 inhibition. Altogether, these data suggest that a PI3K-SGK1 pathway stabilizes Kv7.1 surface expression by inhibiting Nedd4-2-dependent endocytosis and thereby demonstrates that Nedd4-2 is a key regulator of Kv7.1 localization and turnover in epithelial cells
    corecore