25 research outputs found

    Human monoclonal antibodies against Ross River virus target epitopes within the E2 protein and protect against disease

    Get PDF
    Ross River fever is a mosquito-transmitted viral disease that is endemic to Australia and the surrounding Pacific Islands. Ross River virus (RRV) belongs to the arthritogenic group of alphaviruses, which largely cause disease characterized by debilitating polyarthritis, rash, and fever. There is no specific treatment or licensed vaccine available, and the mechanisms of protective humoral immunity in humans are poorly understood. Here, we describe naturally occurring human mAbs specific to RRV, isolated from subjects with a prior natural infection. These mAbs potently neutralize RRV infectivity in cell culture and block infection through multiple mechanisms, including prevention of viral attachment, entry, and fusion. Some of the most potently neutralizing mAbs inhibited binding of RRV to Mxra8, a recently discovered alpahvirus receptor. Epitope mapping studies identified the A and B domains of the RRV E2 protein as the major antigenic sites for the human neutralizing antibody response. In experiments in mice, these mAbs were protective against cinical disease and reduced viral burden in multiple tissues, suggesting a potential therapeutic use for humans

    Mechanism of differential Zika and dengue virus neutralization by a public antibody lineage targeting the DIII lateral ridge

    Get PDF
    We previously generated a panel of human monoclonal antibodies (mAbs) against Zika virus (ZIKV) and identified one, ZIKV-116, that shares germline usage with mAbs identified in multiple donors. Here we show that ZIKV-116 interferes with ZIKV infection at a post-cellular attachment step by blocking viral fusion with host membranes. ZIKV-116 recognizes the lateral ridge of envelope protein domain III, with one critical residue varying between the Asian and African strains responsible for differential binding affinity and neutralization potency (E393D). ZIKV-116 also binds to and cross-neutralizes some dengue virus serotype 1 (DENV1) strains, with genotype-dependent inhibition explained by variation in a domain II residue (R204K) that potentially modulates exposure of the distally located, partially cryptic epitope. The V-J reverted germline configuration of ZIKV-116 preferentially binds to and neutralizes an Asian ZIKV strain, suggesting that this epitope may optimally induce related B cell clonotypes. Overall, these studies provide a structural and molecular mechanism for a cross-reactive mAb that uniquely neutralizes ZIKV and DENV1

    Dengue Virus prM-Specific Human Monoclonal Antibodies with Virus Replication-Enhancing Properties Recognize a Single Immunodominant Antigenic Site

    Get PDF
    ABSTRACT The proposed antibody-dependent enhancement (ADE) mechanism for severe dengue virus (DENV) disease suggests that non-neutralizing serotype cross-reactive antibodies generated during a primary infection facilitate entry into Fc receptor bearing cells during secondary infection, resulting in enhanced viral replication and severe disease. One group of cross-reactive antibodies that contributes considerably to this serum profile target the premembrane (prM) protein. We report here the isolation of a large panel of naturally occurring human monoclonal antibodies (MAbs) obtained from subjects following primary DENV serotype 1, 2, or 3 or secondary natural DENV infections or following primary DENV serotype 1 live attenuated virus vaccination to determine the antigenic landscape on the prM protein that is recognized by human antibodies. We isolated 25 prM-reactive human MAbs, encoded by diverse antibody-variable genes. Competition-binding studies revealed that all of the antibodies bound to a single major antigenic site on prM. Alanine scanning-based shotgun mutagenesis epitope mapping studies revealed diverse patterns of fine specificity of various clones, suggesting that different antibodies use varied binding poses to recognize several overlapping epitopes within the immunodominant site. Several of the antibodies interacted with epitopes on both prM and E protein residues. Despite the diverse genetic origins of the antibodies and differences in the fine specificity of their epitopes, each of these prM-reactive antibodies was capable of enhancing the DENV infection of Fc receptor-bearing cells. IMPORTANCE Antibodies may play a critical role in the pathogenesis of enhanced DENV infection and disease during secondary infections. A substantial proportion of enhancing antibodies generated in response to natural dengue infection are directed toward the prM protein. The fine specificity of human prM antibodies is not understood. Here, we isolated a panel of dengue prM-specific human monoclonal antibodies from individuals after infection in order to define the mode of molecular recognition by enhancing antibodies. We found that only a single antibody molecule can be bound to each prM protein at any given time. Distinct overlapping epitopes were mapped, but all of the epitopes lie within a single major antigenic site, suggesting that this antigenic domain forms an immunodominant region of the protein. Neutralization and antibody-dependent enhanced replication experiments showed that recognition of any of the epitopes within the major antigenic site on prM was sufficient to cause enhanced infection of target cells

    Antibodies targeting epitopes on the cell-surface form of NS1 protect against Zika virus infection during pregnancy

    Get PDF
    Zika virus is an arthropod-transmitted flavivirus that can cause microcephaly and other fetal abnormalities during pregnancy. Here Wessel et al. develop antibodies against the Zika virus nonstructural protein 1 that protect non-pregnant and pregnant mice against infection, and define particular antibody epitopes and mechanisms underlying this protection

    Early human B cell response to Ebola virus in four U.S. survivors of infection

    Get PDF
    The human B cell response to natural filovirus infections early after recovery is poorly understood. Previous serologic studies suggest that some Ebola virus survivors exhibit delayed antibody responses with low magnitude and quality. Here, we sought to study the population of individual memory B cells induced early in convalescence. We isolated monoclonal antibodies (MAbs) from memory B cells from four survivors treated for Ebola virus disease (EVD) 1 or 3 months after discharge from the hospital. At the early time points postrecovery, the frequency of Ebola-specific B cells was low and dominated by clones that were cross-reactive with both Ebola glycoprotein (GP) and with the secreted GP (sGP) form. Of 25 MAbs isolated from four donors, only one exhibited neutralization activity. This neutralizing MAb, designated MAb EBOV237, recognizes an epitope in the glycan cap of the surface glycoprotein. In vivo murine lethal challenge studies showed that EBOV237 conferred protection when given prophylactically at a level similar to that of the ZMapp component MAb 13C6. The results suggest that the human B cell response to EVD 1 to 3 months postdischarge is characterized by a paucity of broad or potent neutralizing clones. However, the neutralizing epitope in the glycan cap recognized by EBOV237 may play a role in the early human antibody response to EVD and should be considered in rational design strategies for new Ebola virus vaccine candidates

    Isolation of a potently neutralizing and protective human monoclonal antibody targeting yellow fever virus

    Get PDF
    Yellow fever virus (YFV) causes sporadic outbreaks of infection in South America and sub-Saharan Africa. While live-attenuated yellow fever virus vaccines based on three substrains of 17D are considered some of the most effective vaccines in use, problems with production and distribution have created large populations of unvaccinated, vulnerable individuals in areas of endemicity. To date, specific antiviral therapeutics have not been licensed for human use against YFV or any other related flavivirus. Recent advances in monoclonal antibody (mAb) technology have allowed the identification of numerous candidate therapeutics targeting highly pathogenic viruses, including many flaviviruses. Here, we sought to identify a highly neutralizing antibody targeting the YFV envelope (E) protein as a therapeutic candidate. We used human B cell hybridoma technology to isolate mAbs from circulating memory B cells from human YFV vaccine recipients. These antibodies bound to recombinant YFV E protein and recognized at least five major antigenic sites on E. Two mAbs (designated YFV-136 and YFV-121) recognized a shared antigenic site and neutralized the YFV-17D vaccine strai

    A multifunctional human monoclonal neutralizing antibody that targets a unique conserved epitope on influenza HA

    Get PDF
    The high rate of antigenic drift in seasonal influenza viruses necessitates frequent changes in vaccine composition. Recent seasonal H3 vaccines do not protect against swine-origin H3N2 variant (H3N2v) strains that recently have caused severe human infections. Here, we report a human VH1-69 gene-encoded monoclonal antibody (mAb) designated H3v-47 that exhibits potent cross-reactive neutralization activity against human and swine H3N2 viruses that circulated since 1989. The crystal structure and electron microscopy reconstruction of H3v-47 Fab with the H3N2v hemagglutinin (HA) identify a unique epitope spanning the vestigial esterase and receptor-binding subdomains that is distinct from that of any known neutralizing antibody for influenza A H3 viruses. MAb H3v-47 functions largely by blocking viral egress from infected cells. Interestingly, H3v-47 also engages Fcγ receptor and mediates antibody dependent cellular cytotoxicity (ADCC). This newly identified conserved epitope can be used in design of novel immunogens for development of broadly protective H3 vaccines

    Early human B cell response to Ebola virus in four U.S. survivors of infection

    Get PDF
    The human B cell response to natural filovirus infections early after recovery is poorly understood. Previous serologic studies suggest that some Ebola virus survivors exhibit delayed antibody responses with low magnitude and quality. Here, we sought to study the population of individual memory B cells induced early in convalescence. We isolated monoclonal antibodies (MAbs) from memory B cells from four survivors treated for Ebola virus disease (EVD) 1 or 3 months after discharge from the hospital. At the early time points postrecovery, the frequency of Ebola-specific B cells was low and dominated by clones that were cross-reactive with both Ebola glycoprotein (GP) and with the secreted GP (sGP) form. Of 25 MAbs isolated from four donors, only one exhibited neutralization activity. This neutralizing MAb, designated MAb EBOV237, recognizes an epitope in the glycan cap of the surface glycoprotein. In vivo murine lethal challenge studies showed that EBOV237 conferred protection when given prophylactically at a level similar to that of the ZMapp component MAb 13C6. The results suggest that the human B cell response to EVD 1 to 3 months postdischarge is characterized by a paucity of broad or potent neutralizing clones. However, the neutralizing epitope in the glycan cap recognized by EBOV237 may play a role in the early human antibody response to EVD and should be considered in rational design strategies for new Ebola virus vaccine candidates

    Mitochondrial DNA Control Region Sequence Polymorphisms from a South Indian Population Sample: A Forensic and Phylogenetic View

    Get PDF
    India is characterized by a human migration history spanning more than 60,000 years. Contemporary populations evolved from early migrations shortly following the African exodus but also recent movements possibly related to the spread of agriculture or t?e Indo-Aryan invasion. India has been underrepresented in mitochondrial surveys of human variation. The aim of this study was to establish a mtDNA dataset for the state of Tamil Nadu, India for forensic purposes and to investigate the diversity of the Tamil Nadu population sample with respect to global populations. The hypervariable regions I, II, and III within the mtDNA control region of a population sample comprising 60 individuals residing in Tamil Nadu, India were sequenced. A total of 57 haplotypes were observed of which 55 were unique. The Tamil Nadu population sample was characterized by high genetic diversity (0.9977), low random match probability (1.90%), and moderate average number of pairwise differences (1 0.81±4.99). For phylogenetic considerations, the Tamil Nadu haplotypes were compared to those of 29 global and national populations comprising a total of 3,822 HVR I, II, and III haplotypes. Phylogenetic examination was conducted using Nei\u27s genetic distance for MultiDimensional Scaling (MDS) and Neighbor Joining (NJ) tree analysis. Extensive genetic admixture was detected between the Tamil Nadu lineages and several adjacent central Asian and Oceanic lineages diminishing with geographical distance. The Tamil Nadu lineages were also highly differentiated from tribal populations in India. These results have implications for forensic applications and studies in human evolution

    Identification of Spermatazoa By Tissue-Specific Differential DNA Methylation Using Bisulfite Modification and Pyrosequencing

    No full text
    The focus of this study is to evaluate the application of epigenetic markers as a forensic tool for the determination of semen present in sexual assault cases. A series of genetic loci were screened in order to identify certain epigenetic markers displaying differential methylation that can allow semen to be differentiated from blood, buccal cells, skin epidermis, and vaginal epithelial cells. Of the different loci tested, a panel of six markers, DACT1, USP49, DDX4, Hs_INSL6_03, Hs_ZC3H12D_05, and B_SPTB_03 were identified to contain tissue‐specific differential methylation. Samples ranging from 9–21 for each tissue type were collected and subjected to bisulfite modification. The bisulfite modified DNA was amplified by PCR, and analyzed by pyrosequencing to quantitate the level of methylation at each marker. All six markers successfully differentiated semen samples from the other four tissue types analyzed. Sperm DNA was hypomethylated in all but one marker, B_SPTB_03, where this marker showed hypermethylation. Mean methylation percentages for semen samples were statistically significant from mean methylation percentages of the other four tissues studied (p \u3c 0.01). The results of this study demonstrate the applicability of epigenetic markers as a novel tool for determination of spermatozoa and to identify the tissue source of origin of a DNA sample
    corecore