14 research outputs found

    Mechanisms of Oxidation Degradation of Cr12 Roller Steel during Thermal Fatigue Tests

    Get PDF
    Degradation by the penetration of oxidation into the Cr12 roller steel is evaluated during thermal fatigue tests in the laboratory in the temperature range of 500–700 °C. A qualitative assessment is carried out with regard to the thermal load, the microstructure and the test temperature. The results show that the specific properties of the microstructure with respect to thermal stress and temperature have a significant influence on the oxidation behavior as well as on the crack propagation mode and crack growth. The conditions that lead to an increase in the oxidation rate and thus to premature and sudden local chipping of the roll surface layer are analyzed and explained.</jats:p

    Early Spalling Analysis of Large Particles in High-Cr Steel during Thermal Fatigue: Relevant Mechanisms

    No full text
    The aim of this study was to investigate the surface deterioration of high-Cr roll steel caused by the spalling of larger particles during thermal fatigue. The mechanisms of surface deterioration due to spalling of larger particles are discussed. Using a laboratory thermal fatigue test that replicates hot rolling conditions, samples were tested cyclically (up to 4500 times) at maximum cycle temperatures of 500, 600 and 700 °C, followed by water cooling. Specimens with surface deterioration were selected for analysis, revealing important influencing parameters, i.e., the combination of test temperatures, chemical composition, thermal stress and microstructural properties, leading to oxidation-assisted crack growth in different directions and consequent surface deterioration due to early spalling of larger particles. Here, we describe the mechanisms of crack propagation, especially in the lateral direction, and their relation to the subsequent spalling of larger particles, which depend on the influence of the local chemical composition on the microstructural constituents, as well as their distribution and properties. The results obtained in this study can be used in the development of roll steel microstructures with improved resistance to the identified mechanisms of surface degradation

    In-Depth Comparison of an Industrially Extruded Powder and Ingot Al Alloys

    No full text
    An industrial press was used to consolidate compacted aluminum powder with a nominal diameter in the range of 1 &micro;m. Direct and indirect hot-extrusion processes were used, and suitable process parameters were determined from heating conditions, ram speeds and billet temperatures. For comparison, a direct-extrusion press for hot extrusion of a conventional aluminum alloy AA 1050 was used. The extruded Al powder showed better mechanical properties and showed a thermal stability of the mechanical properties after annealing treatments. To increase the theoretical density of the directly extruded Al powder, single-hit hot-compression tests were carried out. Activation energies for hot forming were calculated from hot-compression tests carried out in the temperature range 300&ndash;580 &deg;C, at different strain rates. Processing maps were used to demonstrate safe hot-working conditions, to obtain an optimal microstructure after hot forming of extruded Al powder

    In-depth comparison of an industrially extruded powder and ingot Al alloys

    Full text link
    An industrial press was used to consolidate compacted aluminum powder with a nominal diameter in the range of 1 µm. Direct and indirect hot-extrusion processes were used, and suitable process parameters were determined from heating conditions, ram speeds and billet temperatures. For comparison, a direct-extrusion press for hot extrusion of a conventional aluminum alloy AA 1050 was used. The extruded Al powder showed better mechanical properties and showed a thermal stability of the mechanical properties after annealing treatments. To increase the theoretical density of the directly extruded Al powder, single-hit hot-compression tests were carried out. Activation energies for hot forming were calculated from hot-compression tests carried out in the temperature range 300–580 °C, at different strain rates. Processing maps were used to demonstrate safe hot-working conditions, to obtain an optimal microstructure after hot forming of extruded Al powder

    Physical properties of mineral fibers depending on the mineralogical composition

    Full text link
    A developed methodology for determining the physical properties of mineral fibers prepared from different input mixtures under the same spinning wheel conditions is described and discussed. Energy dispersive X-ray fluorescence spectroscopy was combined with simultaneous thermal analysis and thermogravimetry to study the mineralogical composition and typical melting and crystallization temperatures. The mechanical properties measured with nanoindentation were related to the mineralogical properties and the results obtained are in agreement with the literature. The developed methodology shows reliable performance and demonstrates the ability to study the mechanical properties of mineral fibers, their mineralogical composition, and thermal properties. The presented experimental methodology opens up the possibility of researching the mechanical properties of mineral fibers for the purpose of defining production recipes in the field of mineral thermal insulation materials

    Mechanical properties of mineral stone wool fibers based on mixture of blast furnace slag and diabase

    Full text link
    Metallurgical slag is a valuable, but insufficiently used by-product especially from the production of iron and steel.This paper investigates the potential of employing the mixtures of blast furnace slag and naturally occurring minerals in production of mineral wool. Fibers were produced from molten batches of slag-diabase mixtures, and then tested for mechanical properties. Young\u27s modulus and surface hardness of individual fibers were determined by the nanoindentation procedure. Based on experimental results, it can be concluded that mechanical properties of produced fibers are comparable to the properties of nonslag stone wool fibers. This leads to a conclusion that blast furnace slag can be used as the main component in production of mineral wool, largely replacing the natural minerals

    Wellbeing Forecasting in Postpartum Anemia Patients

    No full text
    Postpartum anemia is a very common maternal health problem and remains a persistent public health issue globally. It negatively affects maternal mood and could lead to depression, increased fatigue, and decreased cognitive abilities. It can and should be treated by restoring iron stores. However, in most health systems, there is typically a six-week gap between birth and the follow-up postpartum visit. Risks of postpartum maternal complications are usually assessed shortly after birth by clinicians intuitively, taking into account psychosocial and physical factors, such as the presence of anemia and the type of iron supplementation. In this paper, we investigate the possibility of using machine-learning algorithms to more reliably forecast three parameters related to patient wellbeing, namely depression (measured by Edinburgh Postnatal Depression Scale—EPDS), overall tiredness, and physical tiredness (both measured by Multidimensional Fatigue Inventory—MFI). Data from 261 patients were used to train the forecasting models for each of the three parameters, and they outperformed the baseline models that always predicted the mean values of the training data. The mean average error of the elastic net regression model for predicting the EPDS score (with values ranging from 0 to 19) was 2.3 and outperformed the baseline, which already hints at the clinical usefulness of using such a model. We further investigated what features are the most important for this prediction, where the EDPS score and both tiredness indexes at birth turned out to be by far the most prominent prediction features. Our study indicates that the machine-learning model approach has the potential for use in clinical practice to predict the onset of depression and severe fatigue in anemic patients postpartum and potentially improve the detection and management of postpartum depression and fatigue
    corecore