51 research outputs found

    Arabian muds:A 21st-century natural history on crab plovers, crabs and molluscs

    Get PDF

    Global temperature homogenization can obliterate temporal isolation in migratory animals with potential loss of population structure

    Get PDF
    Abstract Climate change is expected to increase the spatial autocorrelation of temperature, resulting in greater synchronization of climate variables worldwide. Possibly such ‘homogenization of the world’ leads to elevated risks of extinction and loss of biodiversity. In this study, we develop an empirical example on how increasing synchrony of global temperatures can affect population structure in migratory animals. We studied two subspecies of bar-tailed godwits Limosa lapponica breeding in tundra regions in Siberia: yamalensis in the west and taymyrensis further east and north. These subspecies share pre- and post-breeding stopover areas, thus being partially sympatric, but exhibiting temporal segregation. The latter is believed to facilitate reproductive isolation. Using satellite tracking data, we show that migration timing of both subspecies is correlated with the date of snowmelt in their respective breeding sites (later at the taymyrensis breeding range). Snow-cover satellite images demonstrate that the breeding ranges are on different climate trajectories and become more synchronized over time: between 1997 and 2020, the date of snowmelt advanced on average by 0.5 days/year in the taymyrensis breeding range, while it remained stable in the yamalensis breeding range. Previous findings showed how taymyrensis responded to earlier snowmelt by advancing arrival and clutch initiation. In the predicted absence of such advancements in yamalensis, we expect that the two populations will be synchronized by 2036–2040. Since bar-tailed godwits are social migrants, this raises the possibility of population exchange and prompts the question whether the two subspecies can maintain their geographic and morphological differences and population-specific migratory routines. The proposed scenario may apply to a wide range of (social) migrants as temporal segregation is crucial for promoting and maintaining reproductive isolation in many (partially sympatric) migratory populations. Homogenization of previously isolated populations could be an important consequence of increasing synchronized environments and hence climate change

    Global temperature homogenization can obliterate temporal isolation in migratory animals with potential loss of population structure

    Get PDF
    Abstract Climate change is expected to increase the spatial autocorrelation of temperature, resulting in greater synchronization of climate variables worldwide. Possibly such ‘homogenization of the world’ leads to elevated risks of extinction and loss of biodiversity. In this study, we develop an empirical example on how increasing synchrony of global temperatures can affect population structure in migratory animals. We studied two subspecies of bar-tailed godwits Limosa lapponica breeding in tundra regions in Siberia: yamalensis in the west and taymyrensis further east and north. These subspecies share pre- and post-breeding stopover areas, thus being partially sympatric, but exhibiting temporal segregation. The latter is believed to facilitate reproductive isolation. Using satellite tracking data, we show that migration timing of both subspecies is correlated with the date of snowmelt in their respective breeding sites (later at the taymyrensis breeding range). Snow-cover satellite images demonstrate that the breeding ranges are on different climate trajectories and become more synchronized over time: between 1997 and 2020, the date of snowmelt advanced on average by 0.5 days/year in the taymyrensis breeding range, while it remained stable in the yamalensis breeding range. Previous findings showed how taymyrensis responded to earlier snowmelt by advancing arrival and clutch initiation. In the predicted absence of such advancements in yamalensis, we expect that the two populations will be synchronized by 2036–2040. Since bar-tailed godwits are social migrants, this raises the possibility of population exchange and prompts the question whether the two subspecies can maintain their geographic and morphological differences and population-specific migratory routines. The proposed scenario may apply to a wide range of (social) migrants as temporal segregation is crucial for promoting and maintaining reproductive isolation in many (partially sympatric) migratory populations. Homogenization of previously isolated populations could be an important consequence of increasing synchronized environments and hence climate change

    In this Issue

    Get PDF
    Aim: Molluscivorous shorebirds supposedly developed their present wintering distribution after the last ice age. Currently, molluscivorous shorebirds are abundant on almost all shores of the world, except for those in the Indo-West Pacific (IWP). Long before shorebirds arrived on the scene, molluscan prey in the IWP evolved strong anti-predation traits in a prolonged evolutionary arms race with durophagous predators including brachyuran crabs. Here, we investigate whether the absence of molluscivorous shorebirds from a site in Oman can be explained by the molluscan community being too well-defended. Location: The intertidal mudflats of Barr Al Hikman, Oman. Methods: Based on samples from 282 locations across the intertidal area the standing stock of the macrozoobenthic community was investigated. By measuring anti-predation traits (burrowing depth, size and strength of armour), the fraction of molluscs available to molluscivorous shorebirds was calculated. Results: Molluscs dominated the macrozoobenthic community at Barr Al Hikman. However, less than 17% of the total molluscan biomass was available to shorebirds. Most molluscs were unavailable either because of their hard-to-crush shells, or because they lived too deeply in the sediment. Repair scars and direct observations confirmed crab predation on molluscs. Although standing stock densities of the Barr Al Hikman molluscs were of the same order of magnitude as at intertidal mudflat areas where molluscivorous shorebirds are abundant, the molluscan biomass available to shorebirds was distinctly lower at Barr Al Hikman. Main conclusions: The established strong molluscan anti-predation traits against crabs precludes molluscan exploitation by shorebirds at Barr Al Hikman. This study exemplifies that dispersal of "novel" predators is hampered in areas where native predators and prey exhibit strongly developed attack and defence mechanisms, and highlights that evolutionary arms races can have consequences for the global distribution of species
    • …
    corecore