6 research outputs found
KDM6A loss triggers an epigenetic switch that disrupts urothelial differentiation and drives cell proliferation in bladder cancer
UNLABELLED: Disruption of KDM6A, a histone lysine demethylase, is one of the most common somatic alternations in bladder cancer. Insights into how KDM6A mutations affect the epigenetic landscape to promote carcinogenesis could help reveal potential new treatment approaches. Here, we demonstrated that KDM6A loss triggers an epigenetic switch that disrupts urothelial differentiation and induces a neoplastic state characterized by increased cell proliferation. In bladder cancer cells with intact KDM6A, FOXA1 interacted with KDM6A to activate genes instructing urothelial differentiation. KDM6A-deficient cells displayed simultaneous loss of FOXA1 target binding and genome-wide redistribution of the bZIP transcription factor ATF3, which in turn repressed FOXA1-target genes and activated cell-cycle progression genes. Importantly, ATF3 depletion reversed the cell proliferation phenotype induced by KDM6A deficiency. These data establish that KDM6A loss engenders an epigenetic state that drives tumor growth in an ATF3-dependent manner, creating a potentially targetable molecular vulnerability.
SIGNIFICANCE: A gain-of-function epigenetic switch that disrupts differentiation is triggered by inactivating KDM6A mutations in bladder cancer and can serve as a potential target for novel therapies
KDM6A Loss Triggers an Epigenetic Switch That Disrupts Urothelial Differentiation and Drives Cell Proliferation in Bladder Cancer
Disruption of KDM6A, a histone lysine demethylase, is one of the most common somatic alternations in bladder cancer. Insights into how KDM6A mutations affect the epigenetic landscape to promote carcinogenesis could help reveal potential new treatment approaches. Here, we demonstrated that KDM6A loss triggers an epigenetic switch that disrupts urothelial differentiation and induces a neoplastic state characterized by increased cell proliferation. In bladder cancer cells with intact KDM6A, FOXA1 interacted with KDM6A to activate genes instructing urothelial differentiation. KDM6A-deficient cells displayed simultaneous loss of FOXA1 target binding and genome-wide redistribution of the bZIP transcription factor ATF3, which in turn repressed FOXA1-target genes and activated cell-cycle progression genes. Importantly, ATF3 depletion reversed the cell proliferation phenotype induced by KDM6A deficiency. These data establish that KDM6A loss engenders an epigenetic state that drives tumor growth in an ATF3-dependent manner, creating a potentially targetable molecular vulnerability
CD4+ T cells induce rejection of urothelial tumors after immune checkpoint blockade
Immune checkpoint blockade (ICB) provides clinical benefit to a minority of patients with urothelial carcinoma (UC). The role of CD4+ T cells in ICB-induced antitumor activity is not well defined; however, CD4+ T cells are speculated to play a supportive role in the development of CD8+ T cells that kill tumor cells after recognition of tumor antigens presented by MHC class I. To investigate the mechanisms of ICB-induced activity against UC, we developed mouse organoid-based transplantable models that have histologic and genetic similarity to human bladder cancer. We found that ICB can induce tumor rejection and protective immunity with these systems in a manner dependent on CD4+ T cells but not reliant on CD8+ T cells. Evaluation of tumor infiltrates and draining lymph nodes after ICB revealed expansion of IFN-γ-producing CD4+ T cells. Tumor cells in this system express MHC class I, MHC class II, and the IFN-γ receptor (Ifngr1), but none were necessary for ICB-induced tumor rejection. IFN-γ neutralization blocked ICB activity, and, in mice depleted of CD4+ T cells, IFN-γ ectopically expressed in the tumor microenvironment was sufficient to inhibit growth of tumors in which the epithelial compartment lacked Ifngr1. Our findings suggest unappreciated CD4+ T cell-dependent mechanisms of ICB activity, principally mediated through IFN-γ effects on the microenvironment
Endothelial cells are a key target of IFN-g during response to combined PD-1/CTLA-4 ICB treatment in a mouse model of bladder cancer
Summary: To explore mechanisms of response to combined PD-1/CTLA-4 immune checkpoint blockade (ICB) treatment in individual cell types, we generated scRNA-seq using a mouse model of invasive urothelial carcinoma with three conditions: untreated tumor, treated tumor, and tumor treated after CD4+ T cell depletion. After classifying tumor cells based on detection of somatic variants and assigning non-tumor cell types using SingleR, we performed differential expression analysis, overrepresentation analysis, and gene set enrichment analysis (GSEA) within each cell type. GSEA revealed that endothelial cells were enriched for upregulated IFN-g response genes when comparing treated cells to both untreated cells and cells treated after CD4+ T cell depletion. Functional analysis showed that knocking out IFNgR1 in endothelial cells inhibited treatment response. Together, these results indicated that IFN-g signaling in endothelial cells is a key mediator of ICB induced anti-tumor activity