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CANCER RESEARCH | GENOME AND EPIGENOME

KDM6A Loss Triggers an Epigenetic Switch That Disrupts
Urothelial Differentiation and Drives Cell Proliferation in
Bladder Cancer
Hong Qiu1, Vladimir Makarov2, Jennifer K. Bolzenius3, Angela Halstead3, Yvonne Parker4, Allen Wang5,
Gopakumar V. Iyer6, Hannah Wise6, Daniel Kim1, Varna Thayaparan1, Daniel J. Lindner4,
Georges-Pascal Haber7, Angela H. Ting8, Bing Ren5,9,10, Timothy A. Chan2, Vivek Arora3, David B. Solit11,
and Byron H. Lee1,7

ABSTRACT
◥

Disruption of KDM6A, a histone lysine demethylase, is one of the
most common somatic alternations in bladder cancer. Insights into
how KDM6Amutations affect the epigenetic landscape to promote
carcinogenesis could help reveal potential new treatment
approaches. Here, we demonstrated that KDM6A loss triggers an
epigenetic switch that disrupts urothelial differentiation and
induces a neoplastic state characterized by increased cell prolifer-
ation. In bladder cancer cells with intact KDM6A, FOXA1 inter-
acted with KDM6A to activate genes instructing urothelial differ-
entiation. KDM6A-deficient cells displayed simultaneous loss of
FOXA1 target binding and genome-wide redistribution of the bZIP

transcription factor ATF3, which in turn repressed FOXA1-target
genes and activated cell-cycle progression genes. Importantly, ATF3
depletion reversed the cell proliferation phenotype induced by
KDM6A deficiency. These data establish that KDM6A loss engen-
ders an epigenetic state that drives tumor growth in an ATF3-
dependent manner, creating a potentially targetable molecular
vulnerability.

Significance: A gain-of-function epigenetic switch that disrupts
differentiation is triggered by inactivating KDM6A mutations in
bladder cancer and can serve as a potential target for novel therapies.

Introduction
Bladder cancer is the sixth most commonmalignancy in the United

States. Molecular characterization studies across bladder cancer
cohorts have demonstrated recurrent inactivating alterations in chro-
matin modifier genes in nonmuscle-invasive and muscle-invasive
disease, which implies that these mutations occur early in carcino-
genesis and are maintained during progression (1–5). Moreover,
inactivating mutations affect subunits of unique complexes (COM-

PASS-like and SWI/SNF) and their activities (methyltransferases,
acetyltransferases, target binding), which may produce distinct altera-
tions in epigenetic states that lead to the development of bladder
cancer (6–8).

KDM6A is a histone H3 lysine 27 demethylase that plays a
central role in regulating enhancer activity as part of the COM-
PASS-like complex, and its function is critical for embryonic stem
cell differentiation and tissue development. Inactivating KDM6A
mutations have been identified in multiple malignancies, including
leukemias, lymphomas, and cancers of the esophagus, stomach,
endometrium, cervix, head and neck, lung, pancreas, colon, and
rectum (9, 10). Nonetheless, the highest frequency of KDM6A
mutation is found in urothelial cancer, with 26% and 38% of cases
affected in muscle-invasive bladder and upper tract urothelial
carcinoma cohorts, respectively, and alteration rates in early-
stage bladder cancer are as high as 52% (2, 4, 11).

The high frequency ofKDM6A-inactivating mutations has led to its
designation as a tumor suppressor in bladder cancer; however, the
molecular mechanisms by which KDM6A limits tumor initiation and
promotion are incompletely elucidated. KDM6A was shown to acti-
vate gene expression in a catalytic-independent manner; and in
muscle-invasive bladder cancer, its loss cooperated with FGFR3
activation to repress a luminal gene-expression program (12). How-
ever, another study demonstrated that KDM6A loss leads to EZH2-
mediated cell proliferation, which can be reversed through inhibition
of EZH2 methyltransferase activity (13). More recently, the tumor
suppressor activity of KDM6A in leukemia and pancreatic cancer
models was found to be dependent on its ability to phase separate and
form condensates that contain other members of the COMPASS-like
complex (14). Here, we investigate the epigenetic alterations caused by
KDM6A loss and discover decreased chromatin accessibility at motifs
associated with transcription factors governing urothelial differenti-
ation such as FOXA1, GATA3, and ELF3. In KDM6A-deficient
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bladder cancer cells, we identified concomitant, widespread changes in
the chromatin binding of ATF3, a transcription factor associated with
cellular stress response genes. Additionally, we found that ATF3 plays
a dual role in tumor promotion by repressing a FOXA1-driven
urothelial differentiation program and activating cell-cycle genes.
ATF3 depletion decreased cell proliferation in KDM6A-deficient but
not parental bladder cancer cells. Our findings suggest that targeting
the gain-of-function epigenetic alterations that result from KDM6A
loss may provide a novel therapeutic strategy for KDM6A-mutant
bladder cancers.

Materials and Methods
Bladder cancer patient cohort

Written informed consent was obtained from bladder cancer
patients for specimen collection under an Institutional Review
Board-approved protocol adhering to U.S. Common Rule guidelines
at Cleveland Clinic. The intraluminal aspect of tumors identified on
cystoscopy was sampled using a cold cup biopsy forceps, and path-
ologic evaluation confirmed greater than 80% tumor content. The
tissue was then snap frozen immediately in liquid nitrogen for
downstream applications. Clinicopathologic characteristics of the
cohort are described in Supplementary Table S1. Subjects did not
undergo chemotherapy or radiotherapy prior to tissue collection.

Cell lines
RT4 (RRID:CVCL_0036), SW780 (RRID:CVCL_1728), and SCa-

BER (RRID:CVCL_3599) cell lines were purchased from ATCC. Cells
were cultured in McCoy’s 5A medium or DMEM supplemented with
10% fetal bovine serum as recommended by ATCC. All cell lines
underwent short tandem repeat profiling by Labcorp to verify
identity prior to downstream experiments and also prior to cryo-
preservation.Mycoplasma testing was performed regularly using the
MycoAlert Mycoplasma Detection Kit (Lonza) to ensure that no
contaminated cells were used for experimentation or cryopreser-
vation. Cells were used for downstream experiments within six
passages after thawing.

Mouse urothelial organoid culture and xenografts
All mouse studies were performed under an IACUC-approved

animal use protocol. Mouse urothelial organoids were generated as
previously described (15). Briefly, urotheliumwas dissected frommale
C57BL6/J mice bladders bearing wild-type, Kdm6aF, Trp53F/F, or
Kdm6aF;Trp53F/F alleles, dissociated into single-cell suspension, and
organoid cultures were maintained in growth factor–reducedMatrigel
(Corning) tabs suspended in organoid medium with the following
changes: final EGF concentration ¼ 5 ng/mL, final A83-01 concen-
tration ¼ 20 nmol/L, and FGF10, FGF2, dihydrotestosterone, Y-
27632, SB202190, and primocin were omitted. Cre recombinase was
introduced into these organoids by infection with Ad5CMVCre-
eGFP adenovirus (University of Iowa Viral Vector Core) in vitro,
and recombination of floxed alleles was verified using PCR. Dif-
ferentiation of mouse urothelial organoids was performed by treat-
ment with 100 nmol/L all-trans retinoic acid in organoid medium
for 2 weeks.

For xenograft studies, 50 mL of organoids in 50% Matrigel/50%
organoid medium containing 1�106 cells were injected into a subcu-
taneous pocket in the flanks of C57BL6/J mice. Growthmeasurements
of three independent organoid lines of each genotype were performed
in triplicate. Xenografts from Trp53F/F and Kdm6aF;Trp53F/F

organoids were harvested and processed for 4% paraformaldehyde

fixation, paraffin embedding, and hematoxylin–eosin staining using
standard protocols.

Orthotopic xenografts
NOD-scid IL2Rgammanull (NSG) mice (The Jackson Laboratory)

received isoflurane (2%–3%) general anesthesia during xenograft
implantation. For pain control, buprenorphine (0.05 mg/kg s.c.) was
given preoperatively and postoperatively. Hair was removed by depil-
atory cream. Skin was prepared with betadine followed by 70% ethanol
wipe. Local anesthesia was provided by subcutaneous injection of
bupivacaine at the surgical site. A 6-mm midline incision was made
above the pubis, subcutaneous tissues were dissected sharply, and the
bladder was identified. 2�105 bladder cancer cells in 10 mL sterile
saline was injected into the ventral wall of the bladder. The fascia and
subcutaneous tissue were closed in one layer using 5–0 absorbable
suture. Skin was closed with stainless steel clips, which were removed
on day 10.

Bioluminescent imaging was performed using the Cleveland Clinic
Small Animal Imaging Core. Mice were anesthetized using isoflurane
and received an intraperitoneal injection of 6 mg luciferin prior to
imaging with IVIS Spectrum (Perkin-Elmer).

Lentivirus infection
Lentiviral shRNA targeting ATF3, FOXA1, and control shNT were

purchased from Sigma (#TRCN0000013572, #TRCN0000329689,
#TRCN0000014878, #TRCN0000014881, #TRCN0000014879, and
#SHC016). Luciferase, KDM6A, and ATF3 overexpression plasmids
were purchased from Addgene (#17477) and VectorBuilder
(#VB180814-1301, #VB181109-1119, and #VB180323-1141). Lenti-
viral packaging plasmids psPAX2 (#12260) and pMD2.G (#12259)
vectors were obtained from Addgene. For KDM6A knockout experi-
ments, sgRNAs (GGTATGCAGATAATGCTGAA, ACAGTTTA-
CAGTCTGACTAC) (IDT) were cloned into lentiCRISPR v2 nickase
vector (16). All plasmid sequences were verified using Sanger sequenc-
ing before use. Lentiviral plasmids were cotransfected with psPAX2
and pMD2.G intoHEK293T cells to generate lentiviral particles, which
were subsequently collected from the culture medium, concentrated,
and used for target cell transduction. Transduced cells bearing shRNA
and overexpression constructs were cultured in selective growth
medium containing either puromycin or hygromycin and collected
for experiments within 3 to 5 days. Transduced cells bearing CRISPR
vectors were cultured in a selective growth medium containing
puromycin for 48 hours and then maintained in a basal growth
medium. Single clones were screened for KDM6A expression by
immunoblot, and clones containing no detectable KDM6A protein
levels were used for further experiments.

Cell viability
Cell proliferation experiments were performed by plating 3,000

cells per well in a 96-well plate. Three replicates per cell type were
used at each time point. CellTiter-Glo (Promega) was used to
measure cell viability according to the manufacturer’s instructions.
Each experiment was performed four times to ensure reproduc-
ibility, and data were normalized to day 0 counts and plotted as
mean � SEM.

Whole-exome sequencing
DNA was isolated from bladder cancer tissue using the QIAamp

Fast DNA Tissue Kit (Qiagen). Exome capture was performed using
the SureSelect Human All Exon V5 kit (Agilent) prior to library
generation using Illumina adapters. The samples were then sequenced
on the NovaSeq 6000 System using an S4 flow cell in paired-endmode.
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Raw sequencing data were aligned to the GRCh38/hg38 genome build
using the Burrows–Wheeler Aligner (BWA; ref. 17). Further indel
realignment, base-quality score recalibration, and duplicate-read
removal were performed using the Genome Analysis Toolkit (GATK)
following raw reads alignments guidelines. SNV and indels were called
by MuTect2 (GATK v2.2) according to the Genomic Data Commons
best practices (https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipe
lines/DNA_Seq_Variant_Calling_Pipeline/#tumor-only-variant-call
ing-workflow) and annotated with Ensembl Variant Effect Predictor.
Variants with total coverage greater than 10 and alternative allele
frequency greater than 4%were included. Common SNPs and variants
were identified and excluded using dbSNP v142 and gnomAD v2.1.1,
respectively. Indels in low mappability and blacklisted regions were
filtered (18). Variants were then annotated using OncoKB and COS-
MIC, and the annotated Variant Call Format file was converted to
Mutation Annotation Format using the vcf2maf tool (https://github.
com/mskcc/vcf2maf).

ATAC-seq
Assay for transposase-accessible chromatin using sequencing

(ATAC-seq) was performed using the Omni-ATAC protocol with
modifications (19). For cell lines, 50,000 cells were lysed in lysis buffer
(10 mmol/L Tris-HCl, pH 7.4, 10 mmol/L NaCl, 3 mmol/L MgCl2,
0.1% NP-40, 0.1% Tween 20, 0.01% Digitonin). For bladder cancer
surgical specimens, snap-frozen tissues were pulverized with a cold
mortar and pestle, resuspended in lysis buffer, and nuclei were filtered
using a 30-mm filter. 50,000 nuclei were then used for transposition.
Transposition and fragmentation were performed by adding Tn5
transposase from the Nextera DNA Library Prep Kit (Illumina) and
incubating at 37�C for 30 minutes. The tagmented chromatin was
purified with the MinElute PCR purification kit (#28004, Qiagen).
Purified DNA was then ligated with adapters, amplified by PCR, and
size selected before sequencing on a NovaSeq 6000 System using an S4
flow cell in a paired-end mode.

Raw reads were subjected to adapter trimming and quality filtering
using fastp (20). Filtered reads were then aligned to GRCh38/hg38
using Bowtie 2 (21). Duplicates were removed using Picard MarkDu-
plicates (https://broadinstitute.github.io/picard/) and aligned reads
corresponding to mitochondrial and ENCODE blacklist regions were
filtered using SAMtools (22). Peak calling was performed using
MACS2 (23) using –shift -75 –nomodel –extsize 150 –call-summits.
For human bladder cancer specimens, reads were assigned to peaks
using featureCounts (24), and differential peaks between KDM6A-wt
andKDM6A-mut samples were identified byDESeq2 (absolute log2FC
> 0.58, P < 0.05; ref. 25). Differential peaks for cell lines were identified
using MAnorm (26) by comparing reads from each parental cell line
and its KDM6A knockout derivative. The top 5,000 statistically
significant peaks (P < 0.05) by M value for each condition (parental
vs. KDM6A knockout) were considered enriched. MAnorm was also
used to identify private and common peaks between each parental cell
line and its KDM6A knockout derivative using MACS2 peak calls as
input, and the final peak sets were constructed by extending the peak
summits in each direction for a final width of 500 bp. Overlap between
cell line and patient peaks was calculated using Intervene (27). Tran-
scription factor motif enrichment analysis was performed on differ-
ential peaks using the HOMER known motif analysis (28).

Footprinting analysis of cell line ATAC-seq data to predict tran-
scription factor occupancy at regions of accessible chromatin was
performed using the TOBIAS package (29). ATACorrect was used to
correct Tn5 insertion bias, and ScoreBigwig was used to calculate
footprinting scores. BINDetect was then used to predict transcription

factor occupancy at differential peaks identified by MAnorm with
motifs from JASPAR CORE collection.

Comparison of ATAC-seq data between Cleveland Clinic bladder
cancer and The Cancer Genome Atlas (TCGA) cohorts (Supplemen-
tary Data S1; https://gdc.cancer.gov/about-data/publications/ATAC
seq-AWG) was performed as follows. Peaks in distal elements from
Cleveland Clinic bladder cancer patients were identified first by
extending peak summits to 250 bp in each direction for a final width
of 501 bp and then filtering peaks that resided at transcription start
sites. Significant peaks were identified by normalizing MACS2 peak
scores (�log10(P)) according to Corces and colleagues so that samples
with varying read depth and quality could be compared (30). These
peaks were merged with TCGA BLCA, KIRC, KIRP, PRAD, and
TGCT called peaks to generate a universe of peaks. Reads from
Cleveland Clinic bladder cancer and TCGA cohorts were assigned to
peaks using deepTools multiBigwigSummary, and the raw count table
was normalized using DESeq2. Dimension reduction was performed
using UMAP (https://github.com/lmcinnes/umap), and the coordi-
nates were plotted for visualization.

Functional enrichment analysis for ATAC-seq peaks enriched in
KDM6A-wt bladder cancer patient samples was performed by first
assigning peaks to genes using GREAT (31). Assigned genes were then
submitted to TheGeneOntology Resource (http://geneontology.org/).
Gene ontology (GO) terms were manually curated into subnetworks,
and the top terms from each subnetwork were displayed.

Principal component analysis of cell lines was performed as follows.
Differential peaks in RT4 parental and K2 knockout cells were
identified by MAnorm and combined into a universe of peaks bed
file. The average ATAC-seq scores at these peaks were computed using
deepTools multiBigwigSummary and output to a compressed numpy
array, which was plotted onto two dimensions using deepTools
plotPCA –transpose.

RNA-seq
Total RNA from cell lines and organoids was isolated with the

RNeasy Mini Kit (#74104, Qiagen) according to the manufacturer’s
protocol. RNA-seq libraries were generated with the TruSeq Stranded
mRNA Sample Prep Kit (#20020594, Illumina) and sequenced on the
Illumina NovaSeq 6000 System using an S4 flow cell in paired-end
mode. Adapters were trimmed and low-quality reads were filtered
using fastp, which were then aligned to GRCh37/hg19 or GRCm38/
mm10 using HISAT2 (32). Reads were assigned to exons using
featureCounts and the GENCODE GRCh37 v34 or GRCm38 M25
comprehensive gene annotation file (https://www.gencodegenes.org/).
DESeq2 was used to identify differentially expressed genes between
each parental cell line and itsKDM6Aknockout derivative (i.e., RT4 vs.
K2) with absolute log2FC > 0.58 and FDR < 0.05. For functional
enrichment analysis, differentially expressed genes were submitted to
g:Profiler with GO biological process as the data source, no electronic
GO annotations, and FDR < 0.05 for significance threshold (33).
Enrichment maps highlighting common GO terms and their relation-
ships were generated using Cytoscape as described by Reimand
and colleagues (34). Integration of transcriptome and transcription
factor binding site data [chromatin immunoprecipitation sequencing
(ChIP-seq) and CUT&RUN] was performed using BETA basic (35)
with differential peaks identified using MAnorm (absoluteM > 1) and
differentially expressed genes in limma format as inputs.

ChIP-seq and CUT&RUN
H3K27ac, H3K4me1, H3K4me3, and FOXA1 ChIP-seq were per-

formed by cross-linking cells with 1% formaldehyde for 15 minutes at
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room temperature. The reaction was quenched with glycine at a final
concentration of 0.125M for 5 minutes. Cells were washed twice
with ice cold 0.5% Igepal CA-630 with 1 mmol/L PMSF in PBS and
snap frozen on dry ice. Chromatin was sheared by sonication, and an
aliquot was reserved as input DNA. 30 mg chromatin was used for
immunoprecipitation with the following antibodies: anti-H3K27ac
(#39133, Active Motif, RRID:AB_2561016), anti-H3K4me1 (#39297,
Active Motif, RRID:AB_2615075), anti-H3K4me3 (#39159, Active
Motif, RRID:AB_2615077), anti-FOXA1 (#39837, Active Motif,
RRID:AB_2793362). Crosslinks were reversed by heat, DNA was
purified, and enrichment was confirmed by quantitative PCR.
Sequencing libraries were generated and then sequenced on an Illu-
mina HiSeq platform using single-end mode.

KDM6A- and ATF3-binding sites were identified using the
CUT&RUN assay kit (#86652, Cell Signaling Technology). Thirty
microliters of activated Concanavalin A magnetic beads and
1.5 mg anti-KDM6A (#33510, Cell Signaling Technology, RRID:
AB_2721244) or anti-ATF3 antibody (#33593, Cell Signaling Tech-
nology, RRID:AB_2799039) were incubated with 3�105 cells over-
night at 4�C. The enriched chromatin was digested by 150 mL pAG-
MNase enzyme and followed by DNA purification (MinElute PCR
Purification Kit, #28004, Qiagen). Sufficient input DNA for
CUT&RUN experiments was generated by fragmented genomic DNA
by sonication to the appropriate size before DNA purification.
Sequencing libraries were generated with NEBNext Ultra II DNA
Library Prep Kit for Illumina (#E7645, New England Biolabs) and
sequenced on anNovaSeq 6000 System using an S4 flow cell in paired-
end mode.

Using fastp, raw reads underwent adapter trimming and quality
filtering. Filtered reads were then aligned to GRCh38/hg38 using
Bowtie 2. Duplicates were removed using Picard MarkDuplicates and
aligned reads corresponding to mitochondrial and ENCODE blacklist
regions were filtered using SAMtools. Peak calling was performed
using MACS2. Common and private peaks between parental and
knockout cell lines were identified usingMAnormwithMACS2 called
peaks as input. Differential peaks were identified with MAnorm using
absolute M > 1 as a cutoff. Transcription factor motif enrichment
analysis was performed on differential peaks using HOMER known
motif analysis. For UCSC genome browser visualization, bigwig files
were generated using deepTools bamCoverage. Genomic contexts
corresponding to called peaks were annotated using ChIPseeker and
the GENCODE GRCh38 release 38 comprehensive gene annotation
file (https://www.gencodegenes.org/human/release_38.html). Super-
enhancers were identified by stitching enhancers marked by H3K27ac
using ROSE and plotting H3K27ac signal versus superenhancer
rank (36, 37). Stitched enhancers with a position above a line with
slope ¼ 1 that is tangent to the plotted curve were labeled as
superenhancers.

Immunoblot and coimmunoprecipitation
Cells were lysed in RIPA buffer (#89900, Thermo Scientific) or

Nuclear Extraction buffer (50 mmol/L Tris-HCl, pH 8, 200 mmol/L
NaCl, 1.5% NP-40) with protease inhibitors (#A32955, Thermos
Scientific). Protein (25–50 mg) was separated on 4% to 20% MOPS
gel (GenScript) and blotted onto the PVDF membrane (Millipore).
Coimmunoprecipitation was performed as follows: 500 to 1,000 mg of
freshly extracted protein was incubated with 2 to 10 mg of antibody or
rabbit IgG (#12-370,Millipore) overnight at 4�Cwith rotation. Protein
A/G magnetic beads (#88802, Thermos Scientific) were added to this
mixture and incubated for an additional 4 hours. The bead-protein
complexes were washed three times with PBST wash buffer. The

precipitated proteins were eluted from the beads with 2� Laemmli
sample buffer (#1610737, Bio-Rad) and boiling for 10 minutes fol-
lowed by western blot analyses or Mass Spec analysis. The following
primary antibodies were used: anti-KDM6A (#33510, Cell Signaling
Technology, RRID:AB_2721244), anti-ELF3 (#PA5-89261, Thermo
Scientific, RRID:AB_2805451), anti-FOXA1 (#58613, Cell Signaling
Technology, RRID:AB_2799548), anti-FOXA1 (#ab5089, Abcam,
RRID:AB_304744), and anti-ATF3 (#33593, Cell Signaling Tech-
nology, RRID:AB_2799039). Anti-GAPDH (#2118, Cell Signaling
Technology, RRID:AB_561053) was used as a loading control. The
secondary antibodies used were as follows: HRP-linked donkey
anti-rabbit (GE Healthcare, NA934V), HRP-linked mouse anti-
rabbit (#18-8816-31, Rockland), and HRP-linked donkey anti-
goat (#ab97110, Abcam).

AP-1 transcription factor assay
AP-1 activity was measured by colorimetric assay according to the

manufacturer’s directions (#44296, Active Motif). Briefly, nuclear
extracts were prepared from luminal subtype parental (RT4 and
SW780) and KDM6A knockout (K2 and S5) cells. Nuclear extracts
were then incubated at room temperature for 1 hour with an oligo-
nucleotide containing a 12-O-tetradecanoylphorbol 13-acetate (TPA)
response element in a 96-well plate to capture activated AP1 tran-
scription factor elements. After washing the wells 3 times, primary AP-
1 antibodies supplied in the kit or anti-ATF3 antibody (#33593, Cell
Signaling Technology, RRID:AB_2799039) were added. The wells
were then washed 3 times, incubated with secondary anti-rabbit
HRP-conjugated antibody (1:1,000 dilution), washed 4 times, devel-
oped with colorimetric reaction solution, and read by spectropho-
tometer at 450 nm wavelength (reference wavelength ¼ 655 nm).

Statistical analysis
Statistical significance testing for cell proliferation assays was

performed using unpaired two-tailed Student t tests. Statistical para-
meters are expressed as mean � SEM with P values reported in the
figure legends. Genes were differentially expressed if absolute log2FC
was > 0.58 (fold change > 1.5) and FDR < 0.05.

Data and materials availability
All cell lines, plasmids, and other stable reagents generated in this

study are available from the corresponding author with a completed
Materials Transfer Agreement. The data generated in this study
are publicly available at Sequence Read Archive with Accession:
PRJNA822231.

Results
KDM6A mutation disrupts urothelial differentiation
transcription factor circuitry in human bladder cancers

To identify changes in chromatin accessibility due to KDM6A
mutation, we first performed whole-exome sequencing on 16 bladder
cancer surgical specimens to determine theirmutational landscape and
classify cases asKDM6Amutant orwild-type (Fig. 1A; Supplementary.
Table S1). These cancers showed mutational profiles similar to those
seen in other muscle-invasive and nonmuscle-invasive bladder cancer
cohorts, with recurrent chromatin modifier gene and FGFR3 muta-
tions. We identified four cases with (KDM6A-mut) and seven cases
without (KDM6A-wt) an inactivating KDM6A mutation. ATAC-seq
was performed on these cases to ascertain genome-wide chromatin
accessibility profiles. KDM6A mutation in bladder cancer did not
result in the global alteration of chromatin accessibility (Fig. 1B).
KDM6A-wt and KDM6A-mut cases were clustered with TCGA
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Figure 1.

KDM6A mutation alters chromatin accessibility in human bladder cancers. A, Whole-exome sequencing of bladder cancer surgical specimens (n ¼ 16).
Seven KDM6A-wt (blue) and four KDM6A-mut (red) cases were chosen for ATAC-seq analysis. B, UMAP analysis of Cleveland Clinic bladder cancer
specimens (KDM6A-wt, blue; KDM6A-mut, red) and TCGA genitourinary cancer specimens based on ATAC-seq data. C, Enriched motifs in accessible
chromatin peaks specific for KDM6A-wt (blue) and KDM6A-mut (red) cancers. D, Functional enrichment analysis of accessible chromatin peaks enriched
in KDM6A-wt cancers.
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bladder cancer cases, and not with other genitourinary malignancies
such as renal cell carcinoma, prostate adenocarcinoma, and testicular
germcell tumor. Furthermore, KDM6Amutation was accompanied by
distinct chromatin accessibility changes in regulatory elements asso-
ciated with developmental and transcriptional regulation pathways
(Fig. 1C). Called peaks from the Cleveland Clinic cohort were com-
bined into a set of 499,265 total peaks, of which, 8,510 were differ-
entially enriched in KDM6A-wt cases, and 6,292 were differentially
enriched in KDM6A-mut cases (absolute log2FC > 0.58, P < 0.05).
Peaks specific for KDM6A-wt cases were enriched for motifs of
transcription factors that control urothelial identity including fork-
head box (FOXA1/A2) andGATABinding Protein 3 (GATA3). Genes
linked to KDM6A-wt specific peaks were enriched for biological
processes involved in the regulation of differentiation, development,
morphogenesis, and signal transduction and depleted for immune
terms (Fig. 1D). On the other hand, peaks specific for KDM6A-mut
cases were enriched for basic-region leucine zipper (bZIP) transcrip-
tion factors (ATF3, FOSL1/2, and JUNB; Fig. 1C). These data suggest
that KDM6A inactivation is associated with the dysregulation of
transcription factor circuitry that instructs urothelial cell identity and
cell fate.

KDM6A inactivation induces a phenotypic switch fromurothelial
differentiation to cell proliferation

We previously generated mouse urothelial organoids from condi-
tional knockout mice of the following genotypes: (i) Kdm6aF, (ii),
Trp53F/F, and (iii) Trp53F/F; Kdm6aF and transduced them with
Adeno-cre to induce gene deletion (15). Urothelial organoids from
wild-type mice that underwent Adeno-cre treatment were used as a
control, and datawere collected from three independent organoid lines
from each genotype. Organoids were implanted subcutaneously in the
flanks of C57BL/6J mice to assess their tumorigenicity (Fig. 2A).
Trp53-/-;Kdm6a� (DKO) organoids generated cancers with squamous
differentiation; however, neither Kdm6a� nor Trp53�/� organoids
formed tumors (Fig. 2B), which suggests that tumorigenicity due to
Trp53 knockout requires a change in the epigenetic state caused by
Kdm6a deletion in this model system.

We then used RNA-seq to examine the effects ofKdm6a deletion on
organoid gene expression. Compared with wild-type organoids, both
Kdm6a� and DKO organoids showed decreased expression of luminal
genes and increased expression of basal genes with the exception of
Fgfr3, which has been implicated in driving a luminal-to-basal shift
(Fig. 2C; ref. 12). This luminal-to-basal switch led us to hypothesize
thatKdm6a loss also causes a block in urothelial differentiation in these
organoids. Retinoic acid signaling has been shown to induce embry-
onic stem cells to differentiate into urothelial cells in vitro and regulates
the specification of urothelial progenitors during injury/regeneration.
Additionally, KDM6A has been shown to facilitate the recruitment of
MLL4 to retinoic acid–inducible genes (38). When treated with all-
trans retinoic acid (ATRA), wild-type organoids increased expression
of the terminal differentiation markers Upk1a, Krt13, and Krt20
(Supplementary. Fig. S1A). Conversely, Kdm6a� organoids treated
with ATRA showed a decreased expression of these markers, which
suggests that Kdm6a loss interferes with differentiation induced by
retinoic acid signaling. Genes in Kdm6a� organoids that did not
respond to ATRA treatment in the expected direction showed enrich-
ment for biological processes governing development, apoptotic sig-
naling, immune regulation, and stimulus response (Supplementary
Fig. S1B). Globally, most retinoic acid–responsive genes in the wild-
type organoids exhibited similar behavior in the Kdm6a� organoids
upon ATRA treatment, and this behavior was preserved in a Trp53�/�

background (Fig. 2D). Nonetheless, unsupervised clustering of RNA-
seq data demonstrated a set of genes that showed an abnormal
response to ATRA in Kdm6a� and DKO organoids when compared
with WT organoids (Fig. 2D and E). Overall, these data demonstrate
thatKdm6a deletion in mouse urothelial organoids partially disrupts a
retinoic acid–dependent differentiation program and induces a per-
missive state for tumorigenesis that can be triggered by loss of tumor
suppressor gene function.

To examine the functional effects ofKDM6A inactivation in human
bladder cancer, we deleted KDM6A in three bladder cancer cell lines:
RT4, SW780, and SCaBER (Fig. 3A and B). These cell lines were
chosen because they capture the phenotypic diversity of bladder cancer
and did not harbor inactivating chromatin modifier gene mutations.
RT4 and SW780 were derived from low-grade papillary noninvasive
cancers in a male and female, respectively; whereas SCaBER was
derived from a high-grade muscle-invasive bladder cancer. Addition-
ally, these cell lines represent both luminal (RT4 and SW780) and basal
(SCaBER) bladder cancer molecular subtypes. Lastly, both RT4 and
SW780 harbor FGFR3 fusions to TACC3 and BAIAP2L1, respectively;
whereas SCaBER does not harbor any FGFR3 alterations. Compared
with parental cells, KDM6A knockout cells showed increased prolif-
eration in vitro and in vivo as orthotopic xenografts in immunode-
ficient mice (Fig. 3C). RNA-seq was performed to identify differen-
tially expressed genes between each parental cell line and its KDM6A
knockout derivative. Functional analyses of differentially expressed
genes revealed that KDM6A deletion leads to downregulation of gene
regulatory subnetworks governing development, morphogenesis,
homeostasis, stimulus response, and apoptosis (Fig. 3D). In contrast,
KDM6A deletion enriches subnetworks that control processes asso-
ciated with mitosis such as DNA replication, spindle checkpoint, and
DNA repair. Although KDM6A deletion upregulated the basal mar-
kers KRT5, KRT6A, CD44, TP63, ITGA6, and EGFR in the luminal
subtype cell line RT4, it had the opposite effect on the basal subtype cell
line SCaBER (Supplementary Fig. S1C). These data highlight the
dysregulation in subtype identity caused by KDM6A loss in bladder
cancer cells, resulting in an increased expression of basal markers in
luminal subtype cells and vice versa. Nonetheless, a transcriptional
state that supports increased cell proliferation was found consistently
across the three cell lines.

Chromatin accessibility alterations due to KDM6A loss affect
distinct transcriptional circuitry and enhancer usage

We ascertained the chromatin accessibility landscapes of parental
and KDM6A knockout cells to identify the core transcriptional net-
works altered by KDM6A deletion. 82,135 ATAC-seq peaks were
identified among the three parental cell lines, of which, 22,186
(27%) were shared (Supplementary. Fig. S2A). Globally, parental and
knockout cells showed significant overlap in chromatin accessibility.
For example, when RT4 was compared with its KDM6A knockout
subclone K2, they shared 51% of combined called ATAC-seq peaks
(data not shown). Similar to the chromatin accessibility data from
primary bladder cancer specimens, wild-type–specific peaks were
enriched for motifs of transcription factors that play a role in the
formation and differentiation of the urothelium, notably FOXA1,
GRHL2, ELF3, TP63, and KLF5, and peaks specific for KDM6A
knockout subclones showed enrichment for bZIP transcription factors
(Fig. 4A; Supplementary Fig. S2B and S2C). Sites bearing these motifs
showed footprinting changes between parental and knockout cells,
which suggests that a change in motif enrichment is accompanied by
differential transcription factor binding (Fig. 4B; Supplementary
Fig. S2D and S2E). These findings indicate that the chromatin
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accessibility changes arising from KDM6A deletion in bladder cancer
cell lines affect similar transcription factor circuitry as primary cancer
specimens, making these KDM6A knockout subclones suitable
models for functional studies. AdditionalKDM6A knockout subclones
generated from all three cell lines showed similar changes in
proliferation, chromatin accessibility profiles, and motif enrichment
(Supplementary Fig. S3). To further refine cell line selection,
we examined ATAC-seq peak intersection between parental cells
and KDM6A-wt primary cancer specimens as well as between
knockout cells and KDM6A-mut primary cancer specimens (Sup-

plementary Fig. S4A). RT4 and K2 showed the highest overlap with
KDM6A-wt and KDM6A-mut cases, respectively. We next deter-
mined ATAC-seq signal enrichment of parental and KDM6A
knockout subclones in peaks from KDM6A-wt and KDM6A-mut
cases. RT4 showed the highest signal enrichment at KDM6A-wt
patient peaks, whereas all three KDM6A knockout subclones
showed similar enrichment at KDM6A-mut patient peaks (Supple-
mentary Fig. S4B). Additionally, motif enrichment of ATAC-seq
peaks in RT4 and K2 most closely resembled the motif enrichment
of ATAC-seq peaks seen in KDM6A-wt and KDM6A-mut primary
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Figure 2.

Kdm6a loss alters differentiation and cooperates with Trp53 deletion to confer tumorigenicity in mouse urothelial organoids. A, Effect of Kdm6a and Trp53 deletion
on organoid growth as subcutaneous xenografts. DKOdenotes combined Kdm6a and Trp53 knockout.B,Hematoxylin and eosin (top) and gross (bottom) images of
Trp53�/� and DKO organoid xenografts. Trp53�/� organoids formed cystic masses, and DKO organoids formed cancers with squamous differentiation. C,Heat map
of luminal and basal marker expression according to MDACC classification. D, K-means clustering of retinoic acid–responsive genes in mouse urothelial organoids.
Cluster denoted by asterisk shows genes with altered response to 100 nmol/L ATRA in Kdm6a-deficient (Kdm6a and DKO) organoids. E, Examples of two retinoic
acid target genes that exhibited an abnormal response to ATRA treatment in Kdm6a-deficient organoids.
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cancer specimens, respectively (Figs. 1C and 4A). Thus, we selected
RT4 and K2 for further functional studies.

Next, we examined H3K27ac and H3K4me3 signal enrichment
at ATAC-seq peaks by performing ChIP-seq for these marks in RT4
and K2 cells, and we found that 69.1% (RT4) and 71.4% (K2) of
accessible chromatin peaks were associated with either H3K27ac or
H3K4me3, which mark active enhancers and transcription, respec-
tively (Supplementary. Fig. S5A). Sixty-one percent of H3K27ac peaks
were unique to RT4 or K2 cells, indicating an alteration in enhancer
usage after KDM6A loss (Fig. 4C). Motif analysis of RT4-specific

H3K27ac peaks confirmed enrichment for transcription factors
directing urothelial formation and differentiation, whereas K2-
specific H3K27ac peaks showed enrichment for the bZIP transcrip-
tion factors and the basal subtype transcription factor TP63
(Fig. 4C; Supplementary Fig. S5B). H3K27ac signals were stitched
and ranked to identify superenhancers, which have been reported to
control key aspects of cell identity and cancer biology (39). Super-
enhancers associated with luminal subtype such as ELF3 and UPK2
were highly ranked in RT4 and decreased after KDM6A deletion
(Fig. 4D). Conversely, KDM6A deletion increased the ranking of
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Figure 3.

KDM6A deletion increases cell proliferation in luminal and basal subtype bladder cancer cells.A,Genomic alterations of the three bladder cancer cell lines used in this
study.B, Immunoblot demonstrating loss of KDM6Aprotein after CRISPR-mediated gene deletion.C,Cell proliferation of parental (blue) andKDM6A knockout (red)
bladder cancer cells in vitro (top) and in vivo (bottom) as orthotopic xenografts. D, Functional enrichment analysis of differentially expressed genes identified from
RNA-seq (absolute log2FC > 0.58, FDR < 0.05) in parental (top) and KDM6A knockout (bottom) bladder cancer cells. Enriched GO terms list the most common GO
terms in each subnetwork. Blue GO terms highlight subnetworks shared in parental cells, and red GO terms highlight subnetworks shared in KDM6A knockout cells.
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Figure 4.

KDM6A deletion alters chromatin accessibility and enhancer usage in bladder cancer cells. A, ATAC signal heat map (top) and motif analysis (bottom) of accessible
chromatin peaks enriched in RT4 parental (blue) and K2 knockout (red) cells. B, Footprinting analysis at accessible chromatin peaks containing transcription factor
motifs enriched in RT4 parental (blue) and K2 knockout (red) cells. Blue and red lines indicate Tn5 bias-corrected insertions in parental and knockout cells,
respectively.C,Venn diagram (top) showing common and private H3K27ac peaks between RT4 and K2, and heatmap (bottom) showing H3K27ac signal intensity at
differential peaks containing transcription factor motifs for FOXA1, ELF3, ATF3, and TP63. D, Top, inflection plot of superenhancers identified in parental and
knockout cells showing relative changes in luminal (blue) and basal (red) superenhancer rankings. The top-ranked superenhancers are labeled in black. Bottom,
genome browser views of the ELF3 and TP63 superenhancers.
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superenhancers associated with basal subtype such as TP63 and
CD44. These data demonstrate that KDM6A loss alters enhancer
and superenhancer usage to shift luminal subtype cancers to a basal
cell state, and this plasticity in cellular state may permit usage of
alternate signaling pathways for cell growth.

KDM6A loss disrupts the FOXA1 transcription circuit in luminal
subtype bladder cancer cells

We then proposed that KDM6A interacts directly with luminal
subtype transcription factors such as FOXA1 and ELF3, and KDM6A
loss disrupts target binding. To explore this hypothesis, we performed
coimmunoprecipitation using these transcription factors as bait.
When ELF3 was used as bait, KDM6A was not detected (data not
shown). However, KDM6A was detected in the two luminal subtype
cell lines, RT4 and SW780, when FOXA1 was used as bait (Fig. 5A).
Importantly, KDM6A deletion did not affect FOXA1 expression in

these cell lines. FOXA1 ChIP-seq in RT4 and K2 cells demonstrated
thatKDM6A deletion results in a loss of 63%of peaks. Nonetheless, not
all FOXA1 target binding was disrupted by KDM6A loss with K2
retaining 8,115 shared FOXA1 peaks and gaining 3,067 private peaks.
To identify genomic locations bound by KDM6A, we performed
KDM6ACUT&RUN in RT4 cells and found that 90% of peaks overlap
with enhancers marked by either H3K27ac or H3K4me1. This finding
is consistent with another study that showed the majority of KDM6A
binding sites inUMUC1bladder cancer cells fell within enhancers (12).
Forty-six percent of FOXA1 binding sites showed the evidence of
KDM6A binding, and 94% of sites bound by both FOXA1 and
KDM6A colocalized with enhancers marked by H3K27ac. Enhancers
bound by FOXA1 and KDM6A were associated with biological
processes that govern development, metabolism, transcription regu-
lation, and stimulus response (Fig. 5B). Integration of FOXA1
ChIP-seq and gene-expression data revealed that FOXA1 binding is
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both FOXA1 and KDM6A. C, Functional enrichment analysis of FOXA1-bound genes that are upregulated in RT4 cells and genome browser view of the GRHL2 locus.
D, Functional enrichment analysis of FOXA1-bound genes that are upregulated in K2 cells and genome browser view of the CENPM locus.
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associated with the upregulation of genes in both RT4 and K2. RT4-
specific FOXA1 peaks controlled biological processes that regulate
differentiation, metabolism, and apoptosis, whereas K2-specific
FOXA1 peaks were associated with cell-cycle processes, signal trans-
duction cascade, and immune activation (Fig. 5C and D). ATAC and
H3K27ac signals in RT4 and K2 agreed with FOXA1 ChIP-seq signals
at these private peaks, confirming that FOXA1 controls distinct gene-
expression programs in parental and KDM6A knockout cells (Sup-
plementary Fig. S6A). We next assessed phenotypic changes that arise
from FOXA1 depletion. Interestingly, FOXA1 depletion led to
increased proliferation in parental cells but had the opposite
effect inKDM6Aknockout cells (Supplementary Fig. S6B). Combined,
these data support that KDM6A deletion leads to dysregulation of
the FOXA1 transcription circuit by disrupting gene-expression
programs associated with development and homeostasis, whereas
programs associated with cell cycle, signal transduction, and
immune activation remain intact.

KDM6A loss activates the ATF3 transcription circuit in luminal
subtype bladder cancer cells

Next, we focused on examining the changes in bZIP transcription
factor binding after KDM6A deletion and how these changes affect
gene expression. bZIP transcription factors comprise a large family of
related members that can bind as homodimers or heterodimers.
Combinatorial binding allows fine-tuning of site specificity and con-
trol of gene expression. Because bZIP transcription factors recognize
similar motifs, we performed an in vitro transcription factor activity
assay and found increasedATF3 activity afterKDM6A deletion in both
luminal subtype cell lines (Supplementary Fig. S7). ATF3 protein levels

remained stable (S5) or increased (K2) after KDM6A deletion, and
global analysis of ATF3 binding sites revealed that there were over
3-fold more RT4-specific peaks than K2-specific peaks (Fig. 6A).
However, examination of ATF3 binding among different genomic
contexts show that it binds weakly at peaks distributed throughout the
genome in RT4 (Fig. 6B). AfterKDM6A deletion, there is a global shift
in ATF3 binding away from exons, introns, and distal regions toward
proximal promoter sequences, where it binds with high intensity.
Whereas ATF3 peaks private to RT4 correlated with areas of inac-
cessible chromatin (data not shown); overall, there is an increase in
chromatin accessibility and H3K27ac ChIP-seq signal at ATF3 peaks
private to K2 (Supplementary. Fig. S8A). Nonetheless, ATF3 can act as
both a transcriptional activator and repressor, depending onwhether it
homo- or heterodimerizes (40), and we observed this dual role in K2
cells. Upregulated ATF3 target genes in K2 belonged to regulatory
subnetworks controlling biological processes such as cell cycle, signal
transduction, and immune activation (Fig. 6C andD). Downregulated
ATF3 target genes in K2 cells were involved in processes such as
response to negative regulation of receptor tyrosine kinase signaling,
cellular stress and stimulus response, andmetabolic processes (Fig. 6E
and F), and show decreased chromatin accessibility and H3K27ac
ChIP-seq signal compared with upregulated ATF3 target genes
(Fig. 6F). Interestingly, FOXA1-upregulated targets in RT4 and
ATF3-downregulated targets in K2 shared enriched subnetwork
terms, and we identified 1,170 ATF3 target genes downregulated in
K2 that also harbored FOXA1 peaks in RT4 (Supplementary Data S2).
Thus, genes repressed by ATF3 in K2 occur in three contexts (Sup-
plementary Fig. S8B and 8D): contexts 1 and 2 are activated by FOXA1
in RT4, whereas context 3 is not. In the absence of KDM6A, context
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Figure 6.

ATF3 transcription circuit activation after KDM6A loss. A, Top, ATF3 expression in parental (blue) and KDM6A knockout (red) cells. Bottom, Venn diagram
showing shared and private ATF3 peaks in RT4 parental and K2 knockout cells. B, ATF3 CUT&RUN signal at annotated genomic contexts. C, Functional
enrichment analysis of ATF3-bound genes that are upregulated in knockout cells. D, Genome browser view of AURKB, a cell-cycle gene activated by ATF3 in
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1 genes show a complete loss of FOXA1 target binding, whereas
context 2 genes show a partial loss of FOXA1 target binding. Com-
pared with 1,170 genes in contexts 1 and 2, there were 787 genes in
context 3. These data show that in the absence of KDM6A, ATF3-
mediated repression of the FOXA1 regulatory network plays a prom-
inent role in establishing this epigenetic switch. In summary, although
FOXA1-dependent urothelial differentiation and homeostasis were
disrupted by KDM6A loss, these data suggest that the gain-of-function
ATF3 transcription circuit coordinates a gene-expression program
that drives cell proliferation.

Functional loss of either KDM6Aor FOXA1 creates an epigenetic
state that activates the gain-of-function ATF3 transcription
circuit

Themost salient effect ofKDM6A deletion on bladder cancer cells is
increased proliferation, leading us to examine how a cell’s chromatin

state is related to this phenotype. Thus, we ascertained the contribution
of each of the critical gene regulatory factors that we identified in
determining the cell’s proliferation and chromatin state. Although we
observed increased ATF3 protein after KDM6A loss (Fig. 6A), prin-
cipal component analysis of chromatin accessibility data (Fig. 7A)
revealed that overexpression of ATF3 in RT4 cells did not significantly
alter its chromatin state, which shows that the ATF3 transcription
circuit cannot be activated by increasing protein levels alone. On the
other hand, the depletion of FOXA1 in RT4 cells results in a chromatin
state that is similar to the KDM6A knockout cell line K2, which shows
that functional loss of either KDM6A or FOXA1 leads to a similar
chromatin state. This chromatin state can be rescued by reintroducing
KDM6A or a catalytically inactive mutant KDM6A (H1146A) back
into K2 cells. Importantly, these chromatin state alterations were
associated with expected changes in cell proliferation (Fig. 7B). In
RT4 cells, proliferation was increased by depletion of FOXA1 but not
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Figure 7.

Activation of the ATF3 transcription circuit can be triggered by KDM6A or FOXA1 loss in luminal bladder cancer cells. A, Principal component analysis of ATAC-seq
peaks demonstrating relationship among parental and knockout cells that have undergone the following manipulations: RT4-ATF3, RT4 with ATF3 overexpression;
RT4-shFOXA1, RT4 with shRNA targeting FOXA1; K2-KDM6A, K2 with KDM6A overexpression; K2-KDM6A (H1146A), K2 with catalytically inactive KDM6A
overexpression. B, Cell proliferation (top) and ATAC signal (bottom) at RT4-enriched (blue) and K2-enriched (red) accessible chromatin peaks. Green curve in cell
proliferation plots indicates the growth of modified cell lines with RT4 (blue) and K2 (red) curves displayed for comparison. C, ATF3 depletion decreases cell
proliferation in luminal subtype KDM6A knockout cells but not in parental cells. Solid lines, transductionwith nontargeting construct; dashed lines, transduction with
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overexpression of ATF3. In K2 cells, overexpression of either KDM6A
or catalytically inactive KDM6A-H1146A decreased proliferation to
the rate of RT4 cells. Because the gain-of-function ATF3 transcription
circuit is active only in KDM6A knockout cells, we next examined
whether disrupting this transcription circuit will affect the phenotype
of KDM6A knockout cells specifically. Although parental cells showed
no detectable changes in growth, ATF3 decreased cell proliferation in
KDM6A-knockout luminal subtype cells (K2 and S5) but not basal
subtype B7 cells (Fig. 7C). These data demonstrate that the gain-of-
function ATF3 transcription circuit is luminal subtype-specific and
can be activated only upon loss of KDM6A. Moreover, ATF3 disrup-
tion can reverse phenotypic changes induced by KDM6A deletion and
does not affect cells with intact KDM6A.

Discussion
Chromatin modifier gene inactivating mutations occur frequent-

ly in bladder cancer, with most series reporting mutation rates
between 70% and 80%. Many of these mutations arise in members
of the COMPASS-like complex, with up to 60% of cases affected.
Mutations in COMPASS-like complex genes occur early in bladder
carcinogenesis. In an analysis of 140 stage Ta urothelial carcinomas,
KDM6A mutations were present in 52% of cases (4). Although
almost all papillomas, a benign urothelial proliferation, contained
oncogenic HRAS or KRAS mutations, COMPASS-like complex
member mutations in these lesions were rare (41). These data
suggest that chromatin modifier gene inactivation constitutes a
major pathway by which the urothelium undergoes malignant
transformation.

The role of KDM6A inactivation in bladder carcinogenesis remains
incompletely elucidated. In this study, we focused on investigating how
KDM6A loss alters the epigenetic landscape and transcription circuitry
usage of the urothelium to enable cellular transformation. Examina-
tion of human bladder cancer chromatin accessibility demonstrated
that KDM6A mutation did not lead to global changes in the epigen-
ome; but instead, targeted transcription factor circuitry was disrupted.
Specifically, KDM6A-mut cases showed decreased chromatin acces-
sibility in regions containingmotifs of transcription factors that confer
urothelial identity and increased accessibility in regions containing
bZIP transcription factor motifs. Deletion of Kdm6a in organoids
derived from mouse urothelium partially disrupted retinoic acid–
induced differentiation and increased expression of basal markers.
However, Kdm6a deletion alone did not confer tumorigenicity, which
required both Kdm6a and Trp53 loss in this model. Similar findings
were reported in attempts to delete ARID1A, another chromatin
modifier gene commonly mutated in human cancers, in wild-type
human gastric corpus organoids (42). In this model system, the
deletion of TP53 was required for ARID1A-deficient organoids to
undergomalignant transformation. These data support themodel that
Kdm6a loss results in an altered cellular state, which enables tumor
formation in conjunction with either oncogene activation or tumor
suppressor loss. One study found that KDM6A antagonizes FGFR3
signaling and suggests that other chromatin modifier gene mutations
commonly seen in bladder cancer may also set the stage for tumor
progression (12).

Bladder cancers can be broadly categorized as luminal and basal
subtypes that express distinct markers and transcription factors.
AlthoughKDM6Amutations appear to be enriched in luminal subtype
muscle-invasive disease, basal subtype cancers also harbor this alter-
ation. Unlike pancreatic cancer where KDM6A mutations lead to

activation of superenhancers regulated by transcription factors dic-
tating squamous differentiation, we found distinct effects on differ-
entiationmarkers in luminal (RT4 and SW780) versus basal (SCaBER)
subtype bladder cancer cell lines. Basal markers showed increased
expression in the luminal subtype cells but decreased expression in the
basal subtype cells after KDM6A deletion, which suggests dysregula-
tion of subtype identity. This observation is supported by the chro-
matin accessibility changes, which showed loss of peaks associated
with differentiation-associated transcription factors after KDM6A
deletion in both luminal and basal subtype cells. Some of these
transcription factors have been reported to direct aggressive behavior,
but it is unclear how the function of these specific circuits may be
altered when KDM6A is lost. Nonetheless, our findings show that
KDM6A deletion increases proliferation, regardless of bladder cancer
molecular subtype.

FOXA1 has been shown to play a critical role in maintaining
the luminal subtype, and loss of FOXA1 expression has been observed
in cancers with squamous differentiation and in late-stage
disease (43–45). FOXA1 can bind nucleosomal DNA and recruit
coactivators, corepressors, and chromatin modifiers to initiate a
transcriptional program in silent chromatin during development;
however, we found that the FOXA1 regulatory network that drives
luminal differentiation in bladder cancer requires KDM6A function.
In K2 luminal subtype knockout cells, 63% of FOXA1 peaks were lost
compared with parental cells despite no change in FOXA1 expression.
This observation was not surprising, given that FOXA1 interacts with
KDM6A in luminal subtype cancer cells as demonstrated by coim-
munoprecipitation. These data are consistent with another study in
breast cancer cells showing an interaction between FOXA1 and
KMT2C, another key component of the COMPASS-like complex (46).
FOXA1 peaks lost in K2 cells corresponded to active enhancers
associated with urothelial identity, and KDM6A loss has been reported
to disrupt the maintenance of active enhancers in embryonic
stem cells (38). Our chromatin accessibility and gene-expression data
also support FOXA1 shifting to a transcription program that mediates
cell proliferation in the absence of KDM6A. Consistent with these
findings, depletion of FOXA1 in K2 cells reduced cell proliferation.
FOXA1 appears to play opposite roles depending on whether KDM6A
is present; nonetheless, FOXA1 has been identified as a potential
oncogene in other contexts. For example, Foxa1 is required for
the maintenance of urothelial hyperplasia in transgenic mice that
overexpress HRAS in the urothelium (47). In human prostate tissue,
FOXA1 can reprogram the androgen receptor cistrome to promote
malignant transformation, and FOXA1 mutations can further con-
tribute to lineage plasticity during disease progression (48, 49).
In bladder carcinogenesis, FOXA1 function appears to depend on
the epigenetic context and may also contribute to transcriptional
plasticity.

bZIP transcription factors have long been implicated in mediating a
number of cellular processes related to carcinogenesis such as cell
growth, survival, differentiation, stress response, and apoptosis since
their discovery as viral oncoproteins. More recently, bZIP transcrip-
tion factors have also been shown to participate in a gene regulatory
network modulating cancer inflammation (50). Our data demonstrate
that in luminal subtype bladder cancer cells, the bZIP transcription
factor ATF3 directs an oncogenic regulatory circuit that drives cell
proliferation and immune activation, inhibits urothelial differentia-
tion, and alters cellular metabolism through its activator and repressor
activities. Importantly, the combination of FOXA1 and KDM6A
restrains this gain-of-function circuit in luminal subtype bladder
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cancer cells. FOXA1 depletion or KDM6A loss triggers an epigenetic
switch that allows the ATF3 regulatory circuit to function. In the
presence of FOXA1 and KDM6A, forced overexpression of ATF3 does
not increase cell proliferation or alter accessible chromatin peaks.
Disruption of either FOXA1 or KDM6A function induces a similar
epigenetic state that is characterized by ATF3 repositioning to gene
promoters. In KDM6A knockout cells, 60% of the ATF3 repressed
targets were FOXA1-activated targets in wild-type cells, highlighting
the switch from urothelial differentiation and identity to proliferation.
Depletion of ATF3 reversed the cell proliferation phenotype in
KDM6A knockout cells but had no discernible effect on cell prolifer-
ation in parental cells. Importantly, we did not observe the activation of
the ATF3 regulatory circuit in KDM6A-deficient basal subtype cancer
cells. Chromatin accessibility data for B7 cells showed enrichment for a
number of bZIP transcription factors but not ATF3. Additionally,
ATF3 depletion in B7 did not reduce cell proliferation. Although
KDM6A deletion leads to cell proliferation in luminal and basal
subtype bladder cancer cells, the regulatory circuits affected appear
to be distinct.

In summary, we show that KDM6A disruption triggers an epige-
netic switch that perturbs urothelial identity and induces cell prolif-
eration during bladder carcinogenesis (Fig. 8). In luminal subtype
bladder cancer cells, disruption of the FOXA1 regulatory circuit
through either depletion of FOXA1 or its binding partner, KDM6A,
activates the ATF3 protumorigenic transcription program. ATF3
depletion reduced cell proliferation in KDM6A knockout cells but
not wild-type cells, which suggests that this gain-of-function tran-
scription circuit can be targeted directly rather than attempting to
reconstitute KDM6A function in mutant cancers. KDM6A-mutant
bladder cancers may hijack transcription circuits other than ATF3 to
drive cell proliferation in different molecular subtypes. Identifying
these alternate gain-of-function circuits will enable the discovery of
subtype-specific epigenetic therapies.
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