55 research outputs found

    Spatial sensitivity of species habitat patterns to scenarios of land use change (Switzerland)

    Get PDF
    Long-term societal trends which include decreasing population in structurally poorer regions and changes in agricultural policies have been leading to land abandonment in various regions of Europe. One of the consequences of this development includes spontaneous forest regeneration of formerly open-land habitats with likely significant effects on plant and animal diversity. We assess potential effects of agricultural decline in Switzerland (41,000km2) and potential impacts on the spatial distribution of seven open-land species (insects, reptile, birds) under land-use change scenarios: (1) a business-as-usual scenario that extrapolates trends observed during the last 15years into the future, (2) a liberalisation scenario with limited regulation, and (3) a lowered agricultural production scenario fostering conservation. All scenarios were developed in collaboration with socio-economists. Results show that spontaneous reforestation is potentially minor in the lowlands since combinations of socio-economic (better accessibility), topographic (less steep slopes), and climatic factors (longer growing seasons) favour agricultural use and make land abandonment less likely. Land abandonment, spontaneous reforestation, and subsequent loss of open-land, however, are potentially pronounced in mountainous areas except where tourism is a major source of income. Here, socio-economic and natural conditions for cultivation are more difficult, leading to higher abandonment and thus reforestation likelihood. Evaluations for open-land species core habitats indicate pronounced spatial segregation of expected landscape change. Habitat losses (up to 59%) are observed throughout the country, particularly at high elevation sites in the Northern Alps. Habitat gains under the lowered agricultural production scenario range between 12 and 41% and are primarily observed for the Plateau and the Northern Alp

    Scenario-based assessment of future land use change on butterfly species distributions

    Get PDF
    Species distribution models (SDMs) are increasingly used to predict environmentally induced range shifts of habitats of plant and animal species. Consequently SDMs are valuable tools for scientifically based conservation decisions. The aims of this paper are (1) to identify important drivers of butterfly species persistence or extinction, and (2) to analyse the responses of endangered butterfly species of dry grasslands and wetlands to likely future landscape changes in Switzerland. Future land use was represented by four scenarios describing: (1) ongoing land use changes as observed at the end of the last century; (2) a liberalisation of the agricultural markets; (3) a slightly lowered agricultural production; and (4) a strongly lowered agricultural production. Two model approaches have been applied. The first (logistic regression with principal components) explains what environmental variables have significant impact on species presence (and absence). The second (predictive SDM) is used to project species distribution under current and likely future land uses. The results of the explanatory analyses reveal that four principal components related to urbanisation, abandonment of open land and intensive agricultural practices as well as two climate parameters are primary drivers of species occurrence (decline). The scenario analyses show that lowered agricultural production is likely to favour dry grassland species due to an increase of non-intensively used land, open canopy forests, and overgrown areas. In the liberalisation scenario dry grassland species show a decrease in abundance due to a strong increase of forested patches. Wetland butterfly species would decrease under all four scenarios as their habitats become overgrow

    Evaluating macrolichens and environmental variables as predictors of the diversity of epiphytic microlichens

    Get PDF
    In contrast to the frequently assessed macrolichens, microlichens are rarely considered in biodiversity assessments despite their high species richness. Microlichens require generally a higher species identification effort than macrolichens. Thus, microlichens are more expensive to assess. Here we evaluate if macrolichen richness can be used as an indicator of total and threatened microlichen richness. Furthermore, we tested if different sets of environmental variables (modelled climatic variables, forest structure, altitude, etc.) improve the regression models based on macrolichens only or even replace the macrolichens as predictors. Multiple linear regressions were used to model species richness of microlichens, and Poisson regressions for threatened microlichens. On 237 forest plots (200 m2) distributed randomly across Switzerland, 77 macrolichens and 219 microlichens occurred. Macrolichen richness was positively related to the richness of microlichens (=0·27) and, in combination with threatened macrolichens as an additional predictor, also to the number of threatened microlichens (=0·14). Environmental variables alone and in different combinations explained between 0·20 and 0·41 () of the total variation of microlichen richness, and between 0·09 and 0·29 () of the total variation of threatened microlichen richness. All models based on environmental variables were considerably improved when macrolichens were included. Furthermore, macrolichen richness turned out to be the most important variable in explaining species richness of all, as well as threatened microlichens. The best models for total microlichen richness reached a of 0·56. Threatened microlichens were more difficult to model with the best model reaching a of 0·29. We conclude that in biodiversity assessments with scarce resources, lichen sampling could be focused on the better known macrolichens, at least in many temperate lowland and mountain forests. In combination with environmental variables, reliable predictions of microlichen richness can be expected. If the focus is on threatened microlichens, however, models were not reliable and specialized taxonomists are necessary to assess these species in the fiel

    Predicting the potential spatial distributions of epiphytic lichen species at the landscape scale

    Get PDF
    The potential spatial distributions of six epiphytic lichen species were assessed in Switzerland (41 000 km2) as a function of various key climatic drivers and forest types using logistic regression models. Cetrelia cetrarioides is ‘near threatened', Lobaria pulmonaria is ‘vulnerable', and Graphis scripta, Hypogymnia physodes, Lecanora cadubriae, Letharia vulpina are not endangered according to the Red List assessment based on IUCN criteria. Lichen presence and absence were derived from the SwissLichens database that contains spatially explicit information on both species presence and absence. The spatial lichen niches are predicted with R2 values between 0·5 and 0·75 and AUC values between 0·63 and 0·94. Model evaluation shows that the models perform well. Lichenologists reviewed the spatial predictions of lichen species on the basis of their expert knowledge and concluded that parsimonious regression models may suffice for successful prediction of the potential spatial niche distributions of epiphytic lichen specie

    Landscape genetics since 2003: status, challenges and future directions

    Get PDF
    A scientific symposium on landscape genetics, held at the 2013 IALE Europe Conference in Manchester UK (September 2-8, 2013), highlighted status, challenges and future avenues in the field. Key topics included analytical aspects in landscape genetics, conceptual progress and application of landscape genetics for conservation management. First, analytical aspects referred to statistical relationships between genetic and landscape data. It was suggested that linear mixed models or Bayesian approaches are particularly promising due to more appropriate and powerful ways for analyzing landscape effects on genetic variation. Second, supplementing neutral genetic variation with adaptive genetic variation is very promising. However, research needs to go beyond the identification of genomic regions under selection and provide information on the ecological function of adaptive genetic regions. Conceptually, endogenous processes (e.g., life-history attributes such as dispersal) require consideration as supplementary factors in shaping the genetic variation in addition to landscapes. Also, the temporal dimension in landscapes for both the past and the future should be given increased attention as the genetic responses to landscape change may be non-simultaneous, resulting in time lags. As for applied conservation management, landscape genetics can provide important baseline information such as basic data on species movement in a spatial context, assessments of the spatial need for management efforts, or evaluations of the effectiveness of already existing management measures

    Landscape multifunctionality: a powerful concept to identify effects of environmental change

    Get PDF
    The interdisciplinary concept of landscape multifunctionality provides a suitable platform to combine or disentangle effects of multiple environmental stressors acting on the landscape. The concept allows mapping of trade-offs, synergies, and priority conflicts between individual landscape functions, thus providing easily accessible, hands-on means to communicate findings of environmental research to decision makers and society. This rapid communication provides an overview of current developments and potential future research avenues in landscape multifunctionalit

    Effects of Land-Use Change on Carbon Stocks in Switzerland

    Get PDF
    We assessed how consequences of future land-use change may affect size and spatial shifts of C stocks under three potential trends in policy—(a) business-as-usual: continuation of land-use trends observed during the past 15years; (b) extensification: full extensification of open-land; and (c) liberalization: full reforestation potential. The build-up times for the three scenarios are estimated at 30, 80 and 100years, respectively. Potential C-stock change rates are derived from the literature. Whereas the business-as-usual scenario would cause marginal changes of 0.5%, liberalization would provoke a 13% increase in C stocks (+62MtC). Gains of 24% would be expected for forests (+95MtC), whereas open-land C stock would decrease 27% (−33MtC). Extensification would lead to a C stock decrease of 3% (−12MtC). Whereas forest C is expected to increase 12% (+36.5MtC) at high elevations, stocks of open-land C would decline 38.5% (−48.5MtC). Most affected are unfavorable grasslands, which increase in area (+59%) but contribute only 14.5% to the C stocks. C sinks would amount to 0.6MtCy−1 assuming a build-up time of 100years for the liberalization scenario. C stocks on the current forest area are increasing by 1MtCy−1. The maximal total C sink of 1.6MtC might thus suffice to compensate for agricultural greenhouse gases (2004: 1.4Mt CO2-C equivalents), but corresponds only to 11-13% of the anthropogenic greenhouse gas emission in Switzerland. Thus, even the largest of the expected terrestrial C stocks under liberalization will be small in comparison with current emissions of anthropogenic greenhouse gase
    corecore