55 research outputs found

    Movement control tests of the low back; evaluation of the difference between patients with low back pain and healthy controls

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To determine whether there is a difference between patients with low back pain and healthy controls in a test battery score for movement control of the lumbar spine.</p> <p>Methods</p> <p>This was a case control study, carried out in five outpatient physiotherapy practices in the German-speaking part of Switzerland. Twelve physiotherapists tested the ability of 210 subjects (108 patients with non-specific low back pain and 102 control subjects without back pain) to control their movements in the lumbar spine using a set of six tests. We observed the number of positive tests out of six (mean, standard deviation and 95% confidence interval of the mean). The significance of the differences between the groups was calculated with Mann-Whitney U test and <it>p </it>was set on <0.05. The effect size (d) between the groups was calculated and d>0.8 was considered a large difference.</p> <p>Results</p> <p>On average, patients with low back pain had 2.21(95%CI 1.94–2.48) positive tests and the healthy controls 0.75 (95%CI 0.55–0.95). The effect size was d = 1.18 (p < 0.001). There was a significant difference between acute and chronic (p < 0.01), as well as between subacute and chronic patient groups (p < 0.03), but not between acute and subacute patient groups (p > 0.7).</p> <p>Conclusion</p> <p>This is the first study demonstrating a significant difference between patients with low back pain and subjects without back pain regarding their ability to actively control the movements of the low back. The effect size between patients with low back pain and healthy controls in movement control is large.</p

    Improving the sensitivity of the hop index in patients with an ACL deficient knee by transforming the hop distance scores

    Get PDF
    BACKGROUND: The one leg hop for distance is one of the most commonly employed functional tests utilized in the evaluation of the ACL deficient and reconstructed patient. While the reliability of the hop test scores has been well established, validity studies have revealed low sensitivity rates in detecting functional limitations using the hop index (the ratio or percentage of limb performance). However, the impact of the inherent limitations associated with the hop index have not been investigated to date. One specific limitation relates to the impact of the differences in the underlying hop distance scores. Therefore, this pilot study set out to determine: 1) the impact that between limb differences in hop distance has on the sensitivity of the hop index in detecting functional limitations and; 2) whether a logarithmic transformation of the underlying hop distance scores improves the sensitivity of the hop index. METHODS: A cross sectional design involving the evaluation of one leg hop for distance performance in a consecutive sample of 10 ACL deficient males with an isolated ACL tear awaiting reconstructive surgery and nine gender, age-matched controls. RESULTS: In the ACL deficient, the hop index was associated with the distance hopped on the non-injured limb (r = -0.66, p = 0.04) but not on the injured limb. Transformation (logarithmic) of the hop distance scores and re-calculation of the hop index using the transformed scores increased the sensitivity of the hop index in the detection of functional limitations from 20 to 60% and 50 to 70% using the normal limb symmetry reference norms of ≥ 85% and 90% respectively. CONCLUSION: The distance hopped on the non-injured limb is a critical factor in detecting functional limitations using the hop index in patients with an ACL deficient knee. Logarithmic transformation of the hop distance scores minimizes the effect of the arithmetic differences between limbs however; the sensitivity of the hop index in detecting abnormal limb symmetry remains low

    Anaerobic Energy Expenditure and Mechanical Efficiency during Exhaustive Leg Press Exercise

    Get PDF
    Information about anaerobic energy production and mechanical efficiency that occurs over time during short-lasting maximal exercise is scarce and controversial. Bilateral leg press is an interesting muscle contraction model to estimate anaerobic energy production and mechanical efficiency during maximal exercise because it largely differs from the models used until now. This study examined the changes in muscle metabolite concentration and power output production during the first and the second half of a set of 10 repetitions to failure (10RM) of bilateral leg press exercise. On two separate days, muscle biopsies were obtained from vastus lateralis prior and immediately after a set of 5 or a set of 10 repetitions. During the second set of 5 repetitions, mean power production decreased by 19% and the average ATP utilisation accounted for by phosphagen decreased from 54% to 19%, whereas ATP utilisation from anaerobic glycolysis increased from 46 to 81%. Changes in contraction time and power output were correlated to the changes in muscle Phosphocreatine (PCr; r = −0.76; P<0.01) and lactate (r = −0.91; P<0.01), respectively, and were accompanied by parallel decreases (P<0.01-0.05) in muscle energy charge (0.6%), muscle ATP/ADP (8%) and ATP/AMP (19%) ratios, as well as by increases in ADP content (7%). The estimated average rate of ATP utilisation from anaerobic sources during the final 5 repetitions fell to 83% whereas total anaerobic ATP production increased by 9% due to a 30% longer average duration of exercise (18.4±4.0 vs 14.2±2.1 s). These data indicate that during a set of 10RM of bilateral leg press exercise there is a decrease in power output which is associated with a decrease in the contribution of PCr and/or an increase in muscle lactate. The higher energy cost per repetition during the second 5 repetitions is suggestive of decreased mechanical efficiency

    Electromyographic Analysis of Hip Rehabilitation Exercises in a Group of Healthy Subjects

    No full text
    Study Design Single-occasion, repeated-measures design. Objective To determine the magnitude of hip abductor muscle activation during 6 rehabilitation exercises. Background Many researchers have reported that hip strengthening, especially of the hip abductors, is an important component of a lower extremity rehabilitation program. Clinicians employ non-weight-bearing and weight-bearing exercise to strengthen the hip musculature; however, researchers have not examined relative differences in muscle activation during commonly used exercises. Information regarding these differences may provide clinicians with a scientific rationale needed for exercise prescription. Methods and Measures Sixteen healthy subjects (mean ± SD age, 27 ± 5 years; range, 18–42 years; mean ± SD height, 1.7 ± 0.2 m; mean ± SD body mass, 76 ± 15 kg) volunteered for this study. Bipolar surface electrodes were applied to the right gluteus medius muscle. We measured muscle activation as subjects performed 3 non-weight-bearing (sidelying right hip abduction and standing right hip abduction with the hip at 0° and 20° of flexion) and 3 weight-bearing (left-sided pelvic drop and weight-bearing left hip abduction with the hips at 0° and 20° of flexion) exercises. Data were expressed as a percent of maximum voluntary isometric contraction of the right gluteus medius. Differences in muscle activation across exercises were determined using a 1-way analysis of variance with repeated measures, followed by a sequentially rejective Bonferroni post hoc analysis to identify differences between exercises. Results The weight-bearing exercises demonstrated significantly greater EMG amplitudes (P\u3c.001) than all non-weight-bearing exercises except non-weight-bearing sidelying hip abduction. Conclusion The weight-bearing exercises and non-weight-bearing sidelying hip abduction exercise resulted in greater muscle activation because of the greater external torque applied to the hip abductor musculature. Although the non-weight-bearing standing hip abduction exercises required the least activation, they may benefit patients who cannot safely perform the weight-bearing or sidelying hip abduction exercises. Clinicians may use results from this study when designing hip rehabilitation programs

    Reliability of Electromyographic Normalization Methods for Evaluating the Hip Musculature

    No full text
    The purpose of this study was to determine the reliability of three normalization methods for analyzing hip abductor activation during rehabilitation exercises. Thirteen healthy subjects performed three open kinetic chain and three closed kinetic chain hip abductor exercises. Surface EMG activity for the gluteus medius was collected during each exercise and normalized based on a maximum voluntary isometric contraction (MVIC), mean dynamic (m-DYN), and peak dynamic activity (pk-DYN). Intraclass coefficient correlations (ICCs), intersubject coefficients of variation (CVs), and intrasubject CVs were then calculated for each normalization method. MVIC ICCs exceeded 0.93 for all exercises. M-DYN and pk-DYN ICCs exceeded 0.85 for all exercises except for the sidelying abduction exercise. Intersubject CVs ranged from 55% to 77% and 19% to 61% for the MVIC and dynamic methods, respectively. Intrasubject CVs ranged from 11% to 22% for all exercises under all normalization methods. The MVIC method provided the highest measurement reliability for determining differences in activation amplitudes between hip abductor exercises in healthy subjects. Future research should determine if these same results would apply to a symptomatic patient population
    • …
    corecore