87 research outputs found

    Observing Majorana Bound States in p-wave Superconductors Using Noise Measurements in Tunneling Experiments

    Full text link
    The zero-energy bound states at the edges or vortex cores of chiral p-wave superconductors should behave like majorana fermions. We introduce a model Hamiltonian that describes the tunnelling process when electrons are injected into such states. Using a non-equilibrium green function formalism, we find exact analytic expressions for the tunnelling current and noise and identify experimental signatures of the majorana nature of the bound states to be found in the shot noise. We discuss the results in the context of different candidate materials that support triplet superconductivity. Experimental verification of the majorana character of midgap states would have important implications for the prospects of topological quantum computation.Comment: 4 pages, 1 figur

    Time-Loop Formalism for Irreversible Quantum Problems: Steady State Transport in Junctions with Asymmetric Dynamics

    Full text link
    Non-unitary quantum mechanics has been used in the past to study irreversibility, dissipation and decay in a variety of physical systems. In this letter, we propose a general scheme to deal with systems governed by non-Hermitian Hamiltonians. We argue that the Schwinger-Keldysh formalism gives a natural description for those problems. To elucidate the method, we study a simple model inspired by mesoscopic physics --an asymmetric junction. The system is governed by a non-Hermitian Hamiltonian which captures essential aspects of irreversibility.Comment: 4 pages, 4 figure

    Universal out-of-equilibrium Transport in Kondo-correlated quantum dots: Renormalized dual Fermions on the Keldysh contour

    Full text link
    The nonlinear conductance of semiconductor heterostructures and single molecule devices exhibiting Kondo physics has recently attracted attention. We address the observed sample dependence of the measured steady state transport coefficients by considering additional electronic contributions in the effective low-energy model underlying these experiments that are absent in particle-hole symmetric setups. A novel version of the superperturbation theory of Hafermann et al. in terms of dual fermions is developed, which correctly captures the low-temperature behavior. We compare our results with the measured transport coefficients.Comment: 5 pages, 2 figure

    Prediction of the capacitance lineshape in two-channel quantum dots

    Full text link
    We propose a set-up to realize two-channel Kondo physics using quantum dots. We discuss how the charge fluctuations on a small dot can be accessed by using a system of two single electron transistors arranged in parallel. We derive a microscopic Hamiltonian description of the set-up that allows us to make connection with the two-channel Anderson model (of extended use in the context of heavy-Fermion systems) and in turn make detailed predictions for the differential capacitance of the dot. We find that its lineshape, which we determined precisely, shows a robust behavior that should be experimentally verifiable.Comment: 4 pages, 3 figure
    • …
    corecore