14 research outputs found

    Scientific results from the deepened Lopra-1 borehole, Faroe Islands: Wire-line log-based stratigraphy of flood basalts from the Lopra-1/1A well, Faroe Islands

    No full text
    The present study shows that it is possible to use conventional borehole logs to perform a detailed lithological/stratigraphical division of a column of subaerially extruded basalt. A stratigraphical division of the subaerial flood basalts penetrated by the Lopra-1/1A well has been carried out using new wire-line logging data measured in 1996 in the interval 200–2489 m depth. Resistivity data acquired in the interval 200–2178 m depth during 1981 after the initial drilling of the Lopra-1 well have also been incorporated. Eighty-six individual flow units, 18 compound flows and two dolerite dykes have been identified by combining the NPHI porosity, RHOB density, P-, S- and Stonely-sonic transit time, calliper and resistivity logs. Fifty-two sedimentary/tuffaceous layers have also been identified using the CGR and SGR gamma ray and potassium logs in combination with the aforementioned logs. Within the flow units, sonic velocity, density and resistivity are highest in the core where porosity is lowest. This relation is reversed in the uppermost and basal zones of the flow units. The sonic velocity in the core seems to be independent of the thickness of the flow unit. Porous zones seem abundant in some cores and the total section of cores containing porous zones constitutes more than 70% of the thickness of its flow unit, but where porous zones are absent the core makes up only roughly 50% of the thickness of the flow. It is suggested that the flow units with porous cores represent aa flows (88% of the flow units) and the others pahoehoe flows (12% of the flow units).The log pattern of the flow units (crust, core and basal zone) is similar to log patterns reported from other basalt plateaux. However the patterns in Lopra-1/1A show a larger variation than elsewhere,suggesting that the flow units are more complex vertically than previously thought. Statistical analysis of P-, S- and Stonely-waves, RHOB, NPHI, resistivity, gamma and calliper logs has beencarried out. Cross-plots based on the lithological divisions have been produced that show a pronounced reduction in scattering versus P-sonic transit time and P- and S-sonic, RHOB and NPHI logs correlate with depth. The geochemical logs do not reflect the cyclic structure of the flow units and probably represent the primary composition of the basalt. The thorium log especially indicatesflow units with high and low radioactivity and it is suggested that a minimum of 36 flow fields form the logged part of the lower basalt series. Dolerite units described in previous works have been confirmed based on the combined interpretation of wire-line logs. The log data suggest that the subaerially extruded basalt has its base at a depth of approximately 2490 m and that a hyaloclastite succession is found below that depth. The transition from subaerially extruded basalt to hyaloclastite produces a negative acoustic impedance and it is found that the transition corresponds to a negative reflection interpreted on VSP surveys from 1988 and 1994

    Synthetic 3D Recording of a Shipwreck Embedded in Seafloor Sediments: Distinguishing Internal Details

    No full text
    3D recording of shipwrecks completely buried in seafloor sediments has great potential as an important aspect of maritime archaeological surveys and management. Buried shipwrecks have been recorded directly with seismic 3D Chirp sub-bottom profilers on an experimental basis. This method is, however, expensive, time-consuming and complicated. This article outlines the application of a faster, cheaper, and less complicated method of synthetic 3D recording, which is also less sensitive to weather conditions. It involves the acquisition of a larger number of seismic 2D high-resolution sub-bottom profiles in a dense grid that does not need to be regular. The method is based on the results of survey work conducted in the Akko Harbour area, on the Carmel coast of Israel, which shows that the shape of the hull of a shipwreck can be precisely determined, and that the sedimentary units bounding it can be outlined and interpreted. Based on an interpretation of the shape of the hull, the depth of the structure was measured, and a 3D image of the shipwreck was subsequently generated. Samples of the sub-seafloor were obtained across the area, and the sample located within the area of the mapped shipwreck was found to contain wood fragments and a piece of rope. This article demonstrates that 2D surveying is a viable and cost-effective alternative to 3D surveying that is able to produce good results

    3D study of the vibrational behaviour of lithic flint blades

    No full text
    Stone Age sites are well known to often contain many lithic flint blades and flakes, which may provide important information about early European Stone Age cultures and their environment. Understanding the mechanical behaviour of lithic flint blades represents an important problem for scientists in general and archaeologists in particular. In this study, the structural behaviour of lithic flint blades is studied. Ten specimens with different geometric shapes (tilted, curved, with bumping surfaces) were studied and tested. Their natural frequencies, damping ratios, and mode shapes (that is how the specimen deforms under any external excitation) are estimated using two models: an analytical model that accounts for the specimen's curvature and a 3D Finite Element (FE) method. Advanced experimental methods, including ultrasound techniques, were used to measure the mechanical properties of the specimens. The experimental set-up was built around a laser vibrometer that measured the specimen's displacement. The model predictions were compared with the experimental data to validate their effectiveness. A good agreement is observed between the models and the real data. It is particularly observed that despite their complicated geometries, the specimens still follow a structured pattern in their dynamic response. The presented study supports the use of acoustic methods as an effective tool to characterize and detect submerged prehistoric materials. This work contributes to the dynamic characterization of submerged Stone Age materials

    Physical properties and elastic constants of ODP Holes 137-504B and 140-504B upper crustal rocks

    No full text
    Seismic velocities have been measured at confining pressures of 100 MPa and 600 MPa for sheeted dike samples recovered during Ocean Drilling Program Legs 137 and 140. The compressional- and shear-wave velocities show an increase with depth at Hole 504B, which is in sharp contrast to the atmospheric pressure velocity measurements performed as part of the shipboard analyses. Rocks exposed to different types of alteration and fracture patterns show distinct changes in their physical properties. The seismic reflectors observed on the vertical seismic profile (VSP) experiment performed during Leg 111 may have been caused by low velocity zones resulting from alteration. The amount of fracturing and hydrothermal alteration in several zones also may have contributed to the acoustic impedance contrast necessary to produce the E5 reflector. Poisson's ratios calculated from laboratory velocity measurements show several low values at depths ranging from 1600 mbsf to 2000 mbsf, which tends to follow similar trends obtained from previous oceanic refraction experiments. A comparison of physical properties between samples recovered from Hole 504B and ophiolite studies in the Bay of Islands and Oman shows a good correlation with the Bay of Islands but significant differences from the measurements performed in the Oman complex
    corecore