77 research outputs found

    A Note on the Solutions of Some Linear Octonionic Equations

    Get PDF
    The main concerns of this paper are the linear equations with one term and one unknown of the forms: a(xa) =r, a(xb ) = r and (ax)b =r, and the linear equations with two terms and one unknown of the forms: (ax)b +(g x)d =r and a (xb )+g (xd ) =r over the octonion field. Explicit general solutions of the equations in forms a(xa) = r, a(xb ) = r and (ax)b = r are given, and solutions of the octonionic equations form (ax)b +(g x)d = r and a (xb )+g (xd ) = r by matrix representation of octonions are derived using some particular cases. Examples of numerical equations are considered

    On the Solutions of Some Linear Complex Quaternionic Equations

    Get PDF
    Some complex quaternionic equations in the type AX-XB= C are investigated. For convenience, these equations were called generalized Sylvester-quaternion equations, which include the Sylvester equation as special cases. By the real matrix representations of complex quaternions, the necessary and sufficient conditions for the solvability and the general expressions of the solutions are obtaine

    Resistant Chorea Successfully Treated With Intravenous Immunoglobulin: A Case Report*

    Get PDF
    Sydenham’s chorea (SC) is common cause of acquired chorea in childhood. SC occurs mainly in children with untreated streptococcal infections. An effective list of therapeutic options has been used to treat this disorder: antiepileptic drugs (valproic acid, carbamazepine etc.), haloperidol, chlorpromazine, amphetamines, steroids, plasma exchange and intravenous immunoglobulins (IVIG). We report a 12-year-old girl with carditis and severely generalized chorea and successfully treated with IVIG. This case report shows that IVIG is an effective treatment for the chorea cases resistant to anticonvulsants, dopamine antagonists and steroids, although larger studies are needed to confirm this conclusion

    Combined metabolic activators improve metabolic functions in the animal models of neurodegenerative diseases

    Get PDF
    Background: Neurodegenerative diseases (NDDs), including Alzheimer's disease (AD) and Parkinson's disease (PD), are associated with metabolic abnormalities. Integrative analysis of human clinical data and animal studies have contributed to a better understanding of the molecular and cellular pathways involved in the progression of NDDs. Previously, we have reported that the combined metabolic activators (CMA), which include the precursors of nicotinamide adenine dinucleotide and glutathione can be utilized to alleviate metabolic disorders by activating mitochondrial metabolism. Methods: We first analysed the brain transcriptomics data from AD patients and controls using a brain-specific genome-scale metabolic model (GEM). Then, we investigated the effect of CMA administration in animal models of AD and PD. We evaluated pathological and immunohistochemical findings of brain and liver tissues. Moreover, PD rats were tested for locomotor activity and apomorphine-induced rotation. Findings: Analysis of transcriptomics data with GEM revealed that mitochondrial dysfunction is involved in the underlying molecular pathways of AD. In animal models of AD and PD, we showed significant damage in the high-fat diet groups' brain and liver tissues compared to the chow diet. The histological analyses revealed that hyperemia, degeneration and necrosis in neurons were improved by CMA administration in both AD and PD animal models. These findings were supported by immunohistochemical evidence of decreased immunoreactivity in neurons. In parallel to the improvement in the brain, we also observed dramatic metabolic improvement in the liver tissue. CMA administration also showed a beneficial effect on behavioural functions in PD rats. Interpretation: Overall, we showed that CMA administration significantly improved behavioural scores in parallel with the neurohistological outcomes in the AD and PD animal models and is a promising treatment for improving the metabolic parameters and brain functions in NDDs.PoLiMeR Innovative Training Network ; SNIC ; ScandiBio Therapeutics ; ScandiBio Therapeutics and Knut ; Knut och Alice Wallenbergs Stiftels

    Combined metabolic activators improve cognitive functions in Alzheimer’s disease patients: a randomised, double-blinded, placebo-controlled phase-II trial

    Get PDF
    Background: Alzheimer’s disease (AD) is associated with metabolic abnormalities linked to critical elements of neurodegeneration. We recently administered\ua0combined metabolic activators (CMA) to the AD rat model and observed that CMA improves the AD-associated histological parameters in the animals. CMA promotes mitochondrial fatty acid uptake from the cytosol, facilitates fatty acid oxidation in the mitochondria, and alleviates oxidative stress. Methods: Here, we designed a randomised, double-blinded, placebo-controlled phase-II clinical trial and studied the effect of CMA administration on the global metabolism of AD patients. One-dose CMA included 12.35\ua0g L-serine (61.75%), 1\ua0g nicotinamide riboside (5%), 2.55\ua0g\ua0N-acetyl-L-cysteine (12.75%), and 3.73\ua0g L-carnitine tartrate (18.65%). AD patients received one dose of CMA or placebo daily during the first 28\ua0days and twice daily between day 28 and day 84. The primary endpoint was the difference in the cognitive function and daily living activity scores between the placebo and the treatment arms. The secondary aim of this study was to evaluate the safety and tolerability of CMA. A comprehensive plasma metabolome and proteome analysis was also performed to evaluate the efficacy of the CMA in AD patients. Results: We showed a significant decrease of AD Assessment Scale-cognitive subscale (ADAS-Cog) score on day 84 vs day 0 (P = 0.00001, 29% improvement) in the CMA group. Moreover, there was a significant decline (P = 0.0073) in ADAS-Cog scores (improvement of cognitive functions) in the\ua0CMA compared to the placebo group in patients with higher ADAS-Cog scores. Improved cognitive functions in AD patients were supported by the relevant alterations in the hippocampal volumes and cortical thickness based on imaging analysis. Moreover, the plasma levels of proteins and metabolites associated with NAD + and glutathione metabolism were significantly improved after CMA treatment. Conclusion: Our results indicate that treatment of AD patients with CMA can lead to enhanced cognitive functions and improved clinical parameters associated with phenomics, metabolomics, proteomics and imaging analysis. Trial registration\ua0ClinicalTrials.gov NCT04044131 Registered 17 July 2019, https://clinicaltrials.gov/ct2/show/NCT04044131

    Combined metabolic activators improve cognitive functions in Alzheimer's disease patients: A randomised, double-blinded, placebo-controlled phase-II trial

    Get PDF
    Background: Alzheimer’s disease (AD) is associated with metabolic abnormalities linked to critical elements of neurodegeneration. We recently administered combined metabolic activators (CMA) to the AD rat model and observed that CMA improves the AD-associated histological parameters in the animals. CMA promotes mitochondrial fatty acid uptake from the cytosol, facilitates fatty acid oxidation in the mitochondria, and alleviates oxidative stress. Methods: Here, we designed a randomised, double-blinded, placebo-controlled phase-II clinical trial and studied the effect of CMA administration on the global metabolism of AD patients. One-dose CMA included 12.35 g L-serine (61.75%), 1 g nicotinamide riboside (5%), 2.55 g N-acetyl-L-cysteine (12.75%), and 3.73 g L-carnitine tartrate (18.65%). AD patients received one dose of CMA or placebo daily during the first 28 days and twice daily between day 28 and day 84. The primary endpoint was the difference in the cognitive function and daily living activity scores between the placebo and the treatment arms. The secondary aim of this study was to evaluate the safety and tolerability of CMA. A comprehensive plasma metabolome and proteome analysis was also performed to evaluate the efficacy of the CMA in AD patients. Results: We showed a significant decrease of AD Assessment Scale-cognitive subscale (ADAS-Cog) score on day 84 vs day 0 (P = 0.00001, 29% improvement) in the CMA group. Moreover, there was a significant decline (P = 0.0073) in ADAS-Cog scores (improvement of cognitive functions) in the CMA compared to the placebo group in patients with higher ADAS-Cog scores. Improved cognitive functions in AD patients were supported by the relevant alterations in the hippocampal volumes and cortical thickness based on imaging analysis. Moreover, the plasma levels of proteins and metabolites associated with NAD + and glutathione metabolism were significantly improved after CMA treatment. Conclusion: Our results indicate that treatment of AD patients with CMA can lead to enhanced cognitive functions and improved clinical parameters associated with phenomics, metabolomics, proteomics and imaging analysis. Trial registration ClinicalTrials.gov NCT04044131 Registered 17 July 2019, https://clinicaltrials.gov/ct2/show/NCT04044131

    Discovery of therapeutic agents targeting PKLR for NAFLD using drug repositioning

    Get PDF
    Background: Non-alcoholic fatty liver disease (NAFLD) encompasses a wide spectrum of liver pathologies. However, no medical treatment has been approved for the treatment of NAFLD. In our previous study, we found that PKLR could be a potential target for treatment of NALFD. Here, we investigated the effect of PKLR in in vivo model and performed drug repositioning to identify a drug candidate for treatment of NAFLD. Methods: Tissue samples from liver, muscle, white adipose and heart were obtained from control and PKLR knockout mice fed with chow and high sucrose diets. Lipidomics as well as transcriptomics analyses were conducted using these tissue samples. In addition, a computational drug repositioning analysis was performed and drug candidates were identified. The drug candidates were both tested in in vitro and in vivo models to evaluate their toxicity and efficacy. Findings: The Pklr KO reversed the increased hepatic triglyceride level in mice fed with high sucrose diet and partly recovered the transcriptomic changes in the liver as well as in other three tissues. Both liver and white adipose tissues exhibited dysregulated circadian transcriptomic profiles, and these dysregulations were reversed by hepatic knockout of Pklr. In addition, 10 small molecule drug candidates were identified as potential inhibitor of PKLR using our drug repositioning pipeline, and two of them significantly inhibited both the PKLR expression and triglyceride level in in vitro model. Finally, the two selected small molecule drugs were evaluated in in vivo rat models and we found that these drugs attenuate the hepatic steatosis without side effect on other tissues. Interpretation: In conclusion, our study provided biological insights about the critical role of PKLR in NAFLD progression and proposed a treatment strategy for NAFLD patients, which has been validated in preclinical studies. Funding: ScandiEdge Therapeutics and Knut and Alice Wallenberg Foundation

    Effects of immunosuppressive drugs on COVID-19 severity in patients with autoimmune hepatitis

    Get PDF
    Background: We investigated associations between baseline use of immunosuppressive drugs and severity of Coronavirus Disease 2019 (COVID-19) in autoimmune hepatitis (AIH). Patients and methods: Data of AIH patients with laboratory confirmed COVID-19 were retrospectively collected from 15 countries. The outcomes of AIH patients who were on immunosuppression at the time of COVID-19 were compared to patients who were not on AIH medication. The clinical courses of COVID-19 were classified as (i)-no hospitalization, (ii)-hospitalization without oxygen supplementation, (iii)-hospitalization with oxygen supplementation by nasal cannula or mask, (iv)-intensive care unit (ICU) admission with non-invasive mechanical ventilation, (v)-ICU admission with invasive mechanical ventilation or (vi)-death and analysed using ordinal logistic regression. Results: We included 254 AIH patients (79.5%, female) with a median age of 50 (range, 17-85) years. At the onset of COVID-19, 234 patients (92.1%) were on treatment with glucocorticoids (n = 156), thiopurines (n = 151), mycophenolate mofetil (n = 22) or tacrolimus (n = 16), alone or in combinations. Overall, 94 (37%) patients were hospitalized and 18 (7.1%) patients died. Use of systemic glucocorticoids (adjusted odds ratio [aOR] 4.73, 95% CI 1.12-25.89) and thiopurines (aOR 4.78, 95% CI 1.33-23.50) for AIH was associated with worse COVID-19 severity, after adjusting for age-sex, comorbidities and presence of cirrhosis. Baseline treatment with mycophenolate mofetil (aOR 3.56, 95% CI 0.76-20.56) and tacrolimus (aOR 4.09, 95% CI 0.69-27.00) were also associated with more severe COVID-19 courses in a smaller subset of treated patients. Conclusion: Baseline treatment with systemic glucocorticoids or thiopurines prior to the onset of COVID-19 was significantly associated with COVID-19 severity in patients with AIH.Fil: Efe, Cumali. Harran University Hospita; TurquíaFil: Lammert, Craig. University School of Medicine Indianapolis; Estados UnidosFil: Taşçılar, Koray. Universitat Erlangen-Nuremberg; AlemaniaFil: Dhanasekaran, Renumathy. University of Stanford; Estados UnidosFil: Ebik, Berat. Gazi Yasargil Education And Research Hospital; TurquíaFil: Higuera de la Tijera, Fatima. Hospital General de México; MéxicoFil: Calışkan, Ali R.. No especifíca;Fil: Peralta, Mirta. Gobierno de la Ciudad de Buenos Aires. Hospital de Infecciosas "Dr. Francisco Javier Muñiz"; ArgentinaFil: Gerussi, Alessio. Università degli Studi di Milano; ItaliaFil: Massoumi, Hatef. No especifíca;Fil: Catana, Andreea M.. Harvard Medical School; Estados UnidosFil: Purnak, Tugrul. University of Texas; Estados UnidosFil: Rigamonti, Cristina. Università del Piemonte Orientale ; ItaliaFil: Aldana, Andres J. G.. Fundacion Santa Fe de Bogota; ColombiaFil: Khakoo, Nidah. Miami University; Estados UnidosFil: Nazal, Leyla. Clinica Las Condes; ChileFil: Frager, Shalom. Montefiore Medical Center; Estados UnidosFil: Demir, Nurhan. Haseki Training And Research Hospital; TurquíaFil: Irak, Kader. Kanuni Sultan Suleyman Training And Research Hospital; TurquíaFil: Melekoğlu Ellik, Zeynep. Ankara University Medical Faculty; TurquíaFil: Kacmaz, Hüseyin. Adıyaman University; TurquíaFil: Balaban, Yasemin. Hacettepe University; TurquíaFil: Atay, Kadri. No especifíca;Fil: Eren, Fatih. No especifíca;Fil: Alvares da-Silva, Mario R.. Universidade Federal do Rio Grande do Sul; BrasilFil: Cristoferi, Laura. Università degli Studi di Milano; ItaliaFil: Urzua, Álvaro. Universidad de Chile; ChileFil: Eşkazan, Tuğçe. Cerrahpaşa School of Medicine; TurquíaFil: Magro, Bianca. No especifíca;Fil: Snijders, Romee. No especifíca;Fil: Barutçu, Sezgin. No especifíca;Fil: Lytvyak, Ellina. University of Alberta; CanadáFil: Zazueta, Godolfino M.. Instituto Nacional de la Nutrición Salvador Zubiran; MéxicoFil: Demirezer Bolat, Aylin. Ankara City Hospital; TurquíaFil: Aydın, Mesut. Van Yuzuncu Yil University; TurquíaFil: Amorós Martín, Alexandra Noemí. No especifíca;Fil: De Martin, Eleonora. No especifíca;Fil: Ekin, Nazım. No especifíca;Fil: Yıldırım, Sümeyra. No especifíca;Fil: Yavuz, Ahmet. No especifíca;Fil: Bıyık, Murat. Necmettin Erbakan University; TurquíaFil: Narro, Graciela C.. Instituto Nacional de la Nutrición Salvador Zubiran; MéxicoFil: Bıyık, Murat. Uludag University; TurquíaFil: Kıyıcı, Murat. No especifíca;Fil: Kahramanoğlu Aksoy, Evrim. No especifíca;Fil: Vincent, Maria. No especifíca;Fil: Carr, Rotonya M.. University of Pennsylvania; Estados UnidosFil: Günşar, Fulya. No especifíca;Fil: Reyes, Eira C.. Hepatology Unit. Hospital Militar Central de México; MéxicoFil: Harputluoğlu, Murat. Inönü University School of Medicine; TurquíaFil: Aloman, Costica. Rush University Medical Center; Estados UnidosFil: Gatselis, Nikolaos K.. University Hospital Of Larissa; GreciaFil: Üstündağ, Yücel. No especifíca;Fil: Brahm, Javier. Clinica Las Condes; ChileFil: Vargas, Nataly C. E.. Hospital Nacional Almanzor Aguinaga Asenjo; PerúFil: Güzelbulut, Fatih. No especifíca;Fil: Garcia, Sandro R.. Hospital Iv Víctor Lazarte Echegaray; PerúFil: Aguirre, Jonathan. Hospital Angeles del Pedregal; MéxicoFil: Anders, Margarita. Hospital Alemán; ArgentinaFil: Ratusnu, Natalia. Hospital Regional de Ushuaia; ArgentinaFil: Hatemi, Ibrahim. No especifíca;Fil: Mendizabal, Manuel. Universidad Austral; ArgentinaFil: Floreani, Annarosa. Università di Padova; ItaliaFil: Fagiuoli, Stefano. No especifíca;Fil: Silva, Marcelo. Universidad Austral; ArgentinaFil: Idilman, Ramazan. No especifíca;Fil: Satapathy, Sanjaya K.. No especifíca;Fil: Silveira, Marina. University of Yale. School of Medicine; Estados UnidosFil: Drenth, Joost P. H.. No especifíca;Fil: Dalekos, George N.. No especifíca;Fil: N.Assis, David. University of Yale. School of Medicine; Estados UnidosFil: Björnsson, Einar. No especifíca;Fil: Boyer, James L.. University of Yale. School of Medicine; Estados UnidosFil: Yoshida, Eric M.. University of British Columbia; CanadáFil: Invernizzi, Pietro. Università degli Studi di Milano; ItaliaFil: Levy, Cynthia. University of Miami; Estados UnidosFil: Montano Loza, Aldo J.. University of Alberta; CanadáFil: Schiano, Thomas D.. No especifíca;Fil: Ridruejo, Ezequiel. Universidad Austral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. CEMIC-CONICET. Centro de Educaciones Médicas e Investigaciones Clínicas "Norberto Quirno". CEMIC-CONICET; ArgentinaFil: Wahlin, Staffan. No especifíca

    Generalized mixed model assembly line sequencing problem.

    Full text link
    Mixed Model Assembly Lines (MMALs) are increasingly used to produce differentiated products on a single assembly line without work-in-process storage. We address the problem of sequencing MMALs consisting of one station with set-up costs and several stations each offering two types of operations. When a subsequence of jobs requires more work than a station can h and le, utility workers are assigned to complete the jobs. We formulate a Binary Mixed Integer Nonlinear Program to find a sequence minimizing total set-up and utility work costs. A Branch and Bound (BB) algorithm for this problem becomes inefficient for more than 20 jobs. Therefore, we consider heuristic procedures. For one station offering two operations, we develop an algorithm producing solutions with a repetitive pattern, and determine conditions for which these solutions are optimal. We propose a surrogate objective function penalizing violations of these patterns. We prove that the algorithm produces optimal solutions for the surrogate objective, and show that the surrogate objective is asymptotically equal to the original objective. For multiple stations offering two operations, we develop a heuristic BB algorithm minimizing total weighted violations. We compare our algorithm with a r and om scheduling procedure and an algorithm used by a major automobile company (Company X). Using sets of 1000 to 5000 r and om and real job orders, and with 12 to 14 stations, we observe that (1) both Company X's algorithm and our procedure outperform the r and om procedure, (2) total utility work of our solutions is approximately 90% and 56% less than that of Company X's in r and om and real data, respectively. Finally, we include a procedure to the algorithm to select the sequence of choices at the station having set-up costs, given a specified number of jobs between changeovers. Computational experiments indicate that this procedure outperforms several other logical procedures. This research has bridged some gaps between approaches presented in the literature and those implemented in practice by developing an efficient heuristic method for a class of large problems. Although this research focused specifically on MMAL systems, results can be applied to some flexible manufacturing systems, automatic transfer lines, pure flow shops or mixed model flow lines.Ph.D.Industrial engineeringUniversity of Michiganhttp://deepblue.lib.umich.edu/bitstream/2027.42/161772/1/8812858.pd
    corecore