3 research outputs found

    How changes in human activities during the lockdown impacted air quality parameters: A review

    Get PDF
    The health emergency linked to the spread of COVID-19 has led to important reduction in industrial and logistics activities, as well as to a drastic changes in citizens' behaviors and habits. The restrictions on working activities, journeys and relationships imposed by the lockdown have had important consequences, including for environmental quality. This review aims to provide a structured and critical evaluation of the recent scientific bibliography that analyzed and described the impact of lockdown on human activities and on air quality. The results indicate an important effect of the lockdown during the first few months of 2020 on air pollution levels, compared to previous periods. The concentrations of particulate matter, nitrogen dioxide, sulfur dioxide and carbon monoxide have decreased. Tropospheric ozone, on the other hand, has significantly increased. These results are important indicators that can become decision drivers for future policies and strategies in industrial and logistics activities (including the mobility sector) aimed at their environmental sustainability. The scenario imposed by COVID-19 has supported the understanding of the link between the reduction of polluting emissions and the state of air quality and will be able to support strategic choices for the future sustainable growth of the industrial and logistics sector

    On the mathematical modelling and data assimilation for air pollution assessment in the Tropical Andes

    No full text
    Air pollution assessment in the Tropical Andes requires a multidisciplinary approach. This can be supported from the understanding of the underlying biological dynamics and atmospheric behavior, to the mathematical approach for the proper use of all available information. This review paper touches on several aspects in which mathematical models can help to solve challenging problems regarding air pollution in reviewing the state-of-the-art at the global level and assessing the corresponding state of development as applied to the Tropical Andes. We address the complexities and challenges that modelling atmospheric dynamics in a mega-diverse region with abrupt topography entails. Understanding the relevance of monitoring and facing the problems of data scarcity, we call attention to the usefulness of data assimilation for uncertainty reduction, and how these techniques could help tackle the scarcity of regional monitoring networks to accelerate the implementation and development of modelling systems for air quality in the Tropical Andes. Finally, we suggest a cyberphysical framework for decision-making processes based on the data assimilation of chemical transport models, the forecast of scenarios, and their use in regulation and policy making. © 2020, Springer-Verlag GmbH Germany, part of Springer Nature
    corecore