141 research outputs found

    The role of neuro-specific dihydropyrimidinase-related protein 2 (dpyl2) in spatial memory formation in teleosts

    Get PDF
    This article presents the results of an experiment on the influence of serotonin-modulating anticonsolidation protein (SMAP) on the spatial memory formation of juvenile goldfish Carassius auratus (L.) in a maze with food reinforcement. Three experimental fish groups were formed: (1) intact animals, (2) experimental group (fish injected ICV with SMAP in 24 h before the beginning of training; 2 μl, 1.5 mg·ml–1), (3) active control group (fish injected ICV with inactivated SMAP). Goldfishes of the experimental group demonstrated the lowest capability for spatial recognition: the maximum level of performance of the task was on 4th day of the training – 38%, while the values of this index in fishes of the control and intact groups were 70% and 63% respectively. In general, throughout the period of the training the average value of task performance was 16% in the SMAP-injected fish (in the control and intact groups – 42% and 53%, respectively). By using Ds-Na-polyacrylamide gel electrophoresis SMAP compositeon has been revealed. It was found that it consists of 10–12 protein components, among which four proteins dominated. They were identified by mass spectrometry MALDI-TOF: spectrin, dihydropyrimidinase-related protein 2 (DPYL2), tubulin and actin. It has been suggested that the most likely candidate responsible for the negative effects of SMAP on fish memory formation is DPYL2. It was hypothesized that anticonsolidation effect of SMAP is caused by the effect of DPYL2 which blocks the growth of axons or its cytostatic activity which leads to disorders in formation of new neurons in the brain as a result of learning

    Deposition of Aluminum-Doped ZnO Films by ICP-Assisted Sputtering

    Get PDF
    Inductively coupled plasma (ICP) assisted DC sputter deposition was used for the deposition of Al-doped ZnO (AZO or ZnO:Al) thin films. With increasing ICP RF power, film properties including deposition rate, crystallinity, transparency, and resistivity were improved. To understand the plasma-surface interaction, several plasma diagnostics were performed. Heat fluxes to the substrate were measured by thermal probes, number densities of sputtered metallic atom species were measured by absorption spectroscopy using hollow cathode lamps (HCL) and light emitting diodes (LEDs), and neutral gas temperatures were measured by external cavity diode laser (ECDL) absorption spectroscopy. As a result, it was revealed that the high-density ICP heated the substrate through a high heat flux to the substrate, resulting in a high-quality film deposition without the need for intentional substrate heating. The heat flux to the substrate was predominantly contributed by the plasma charged species, not by the neutral Ar atoms which were also significantly heated in the ICP. The substrate position where the highest quality films were obtained was found to coincide with the position where the substrate heat flux took the maximum value
    • …
    corecore