43 research outputs found

    Negative Elongation Factor Controls Energy Homeostasis in Cardiomyocytes

    Get PDF
    SummaryNegative elongation factor (NELF) is known to enforce promoter-proximal pausing of RNA polymerase II (Pol II), a pervasive phenomenon observed across multicellular genomes. However, the physiological impact of NELF on tissue homeostasis remains unclear. Here, we show that whole-body conditional deletion of the B subunit of NELF (NELF-B) in adult mice results in cardiomyopathy and impaired response to cardiac stress. Tissue-specific knockout of NELF-B confirms its cell-autonomous function in cardiomyocytes. NELF directly supports transcription of those genes encoding rate-limiting enzymes in fatty acid oxidation (FAO) and the tricarboxylic acid (TCA) cycle. NELF also shares extensively transcriptional target genes with peroxisome proliferator-activated receptor α (PPARα), a master regulator of energy metabolism in the myocardium. Mechanistically, NELF helps stabilize the transcription initiation complex at the metabolism-related genes. Our findings strongly indicate that NELF is part of the PPARα-mediated transcription regulatory network that maintains metabolic homeostasis in cardiomyocytes

    Does Reduced IGF-1R Signaling in Igf1r+/− Mice Alter Aging?

    Get PDF
    Mutations in insulin/IGF-1 signaling pathway have been shown to lead to increased longevity in various invertebrate models. Therefore, the effect of the haplo- insufficiency of the IGF-1 receptor (Igf1r+/−) on longevity/aging was evaluated in C57Bl/6 mice using rigorous criteria where lifespan and end-of-life pathology were measured under optimal husbandry conditions using large sample sizes. Igf1r+/− mice exhibited reductions in IGF-1 receptor levels and the activation of Akt by IGF-1, with no compensatory increases in serum IGF-1 or tissue IGF-1 mRNA levels, indicating that the Igf1r+/− mice show reduced IGF-1 signaling. Aged male, but not female Igf1r+/− mice were glucose intolerant, and both genders developed insulin resistance as they aged. Female, but not male Igf1r+/− mice survived longer than wild type mice after lethal paraquat and diquat exposure, and female Igf1r+/− mice also exhibited less diquat-induced liver damage. However, no significant difference between the lifespans of the male Igf1r+/− and wild type mice was observed; and the mean lifespan of the Igf1r+/− females was increased only slightly (less than 5%) compared to wild type mice. A comprehensive pathological analysis showed no significant difference in end-of-life pathological lesions between the Igf1r+/− and wild type mice. These data show that the Igf1r+/− mouse is not a model of increased longevity and delayed aging as predicted by invertebrate models with mutations in the insulin/IGF-1 signaling pathway

    Lack of methionine sulfoxide reductase A in mice increases sensitivity to oxidative stress but does not diminish life span

    No full text
    Methionine sulfoxide reductase A (MsrA) repairs oxidized methionine residues within proteins and may also function as a general antioxidant. Previous reports have suggested that modulation of MsrA in mice and mammalian cell culture can affect the accumulation of oxidized proteins and may regulate resistance to oxidative stress. Thus, under the oxidative stress theory of aging, these results would predict that MsrA regulates the aging process in mammals. We show here that MsrA−/− mice are more susceptible to oxidative stress induced by paraquat. Skin-derived fibroblasts do not express MsrA, but fibroblasts cultured from MsrA−/− mice were, nevertheless, also more susceptible to killing by various oxidative stresses. In contrast to previous reports, we find no evidence for neuromuscular dysfunction in MsrA−/− mice in either young adult or in older animals. Most important, we found no difference between MsrA−/− and control mice in either their median or maximum life span. Thus, our results show that MsrA regulates sensitivity to oxidative stress in mice but has no effect on aging, as determined by life span.—Salmon, A. B., Pérez, V. I., Bokov, A., Jernigan, A., Kim, G., Zhao, H., Levine, R. L., Richardson, A. Lack of methionine sulfoxide reductase A in mice increases sensitivity to oxidative stress but does not diminish life span

    Profiling the Anaerobic Response of <i>C. elegans</i> Using GC-MS

    Get PDF
    <div><p>The nematode <i>Caenorhabditis elegans</i> is a model organism that has seen extensive use over the last four decades in multiple areas of investigation. In this study we explore the response of the nematode <i>Caenorhabditis elegans</i> to acute anoxia using gas-chromatography mass-spectrometry (GC-MS). We focus on the readily-accessible worm exometabolome to show that <i>C. elegans</i> are mixed acid fermenters that utilize several metabolic pathways in unconventional ways to remove reducing equivalents – including partial reversal of branched-chain amino acid catabolism and a potentially novel use of the glyoxylate pathway. In doing so, we provide detailed methods for the collection and analysis of excreted metabolites that, with minimal adjustment, should be applicable to many other species. We also describe a procedure for collecting highly volatile compounds from <i>C. elegans</i>. We are distributing our mass spectral library in an effort to facilitate wider use of metabolomics.</p></div

    Hepatic response to oxidative injury in long-lived Ames dwarf mice

    No full text
    Multiple stress resistance pathways were evaluated in the liver of Ames dwarf mice before and after exposure to the oxidative toxin diquat, seeking clues to the exceptional longevity conferred by this mutation. Before diquat treatment, Ames dwarf mice, compared with nonmutant littermate controls, had 2- to 6-fold higher levels of expression of mRNAs for immediate early genes and 2- to 5-fold higher levels of mRNAs for genes dependent on the transcription factor Nrf2. Diquat led to a 2-fold increase in phosphorylation of the stress kinase ERK in control (but not Ames dwarf) mice and to a 50% increase in phosphorylation of the kinase JNK2 in Ames dwarf (but not control) mice. Diquat induction of Nrf2 protein was higher in dwarf mice than in controls. Of 6 Nrf2-responsive genes evaluated, 4 (HMOX, NQO-1, MT-1, and MT-2) remained 2- to 10-fold lower in control than in dwarf liver after diquat, and the other 2 (GCLM and TXNRD) reached levels already seen in dwarf liver at baseline. Thus, livers of Ames dwarf mice differ systematically from controls in multiple stress resistance pathways before and after exposure to diquat, suggesting mechanisms for stress resistance and extended longevity in Ames dwarf mice.—Sun, L. Y., Bokov, A. F., Richardson, A., Miller, R. A. Hepatic response to oxidative injury in long-lived Ames dwarf mice

    Assessment of technical and biological variability in samples.

    No full text
    <p>Replicate technical analyses were performed on each of two exometabolome samples collected from independent, normoxically-cultured, N2 worm preparations. For all four datasets, integrated metabolite peak areas were normalized to internal standard and total worm protein. Data were plotted after log<sub>10</sub> transformation. (<b>a</b>) Combined scatterplot showing technical variation for both biological samples (A1 versus A2, B1 versus B2). (<b>b</b>) Bland-Altman plot highlighting differences between the integrated intensities of metabolites in A1 and A2. The bold horizontal line represents the average difference across all metabolites. The solid horizontal lines correspond to the mean difference ± two standard deviations. The dashed vertical line is the experimentally-determined noise threshold. Data below this threshold were removed from <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0046140#pone-0046140-g003" target="_blank">Figure 3</a> by applying a low-abundance cutoff.</p
    corecore