27 research outputs found

    P424Short-term ACE Inhibition upregulates cardiac expression of SERCA2a and protects against ventricular arrhythmias in healthy rats

    Get PDF
    Introduction: Chronic angiotensin converting enzyme inhibitor (ACEIs) treatment can suppress arrhythmogenesis. To examine whether the effect is more immediate and independent of suppression of pathological remodelling, we tested the antiarrhythmic effect of short-term ACE inhibition in healthy normotensive rats. Methods and results: Wistar rats were administered with enalaprilat (ENA, i.p., 5 mg/kg every 12 h) or vehicle (CON) for two weeks. Cellular shortening was measured in isolated, electrically paced cardiomyocytes. Standard 12-lead electrocardiography was performed and, hearts of anesthetized open-chest rats were subjected to 6-min ischemia followed by 10-minute reperfusion to examine susceptibility to ventricular arrhythmias. Expressions of calcium regulating proteins (SERCA2a, cardiac sarco/endoplasmic reticulum Ca2+-ATPase; CSQ, calsequestrin; TRD, triadin; PLB, phospholamban; FKBP12.6, FK506-binding protein) were measured by Western blot and mRNA levels of L-type calcium channel (Cacna1c), ryanodine receptor (Ryr2) and potassium channels Kcnh2 and Kcnq1 were measured by qRT-PCR. ENA decreased systolic as well as diastolic blood pressure (by 20%, and by 31%, respectively, for both P<0.05) but enhanced shortening of cardiomyocytes at basal conditions (by 34%, P<0.05) and under beta-adrenergic stimulation (by 73%, P<0.05). Enalaprilat shortened QTc interval duration (CON: 78±1 ms vs. ENA: 72±2 ms; P<0.05) and significantly decreased the total duration of ventricular fibrillations (VF) and the number of VF episodes (P<0.05). Reduction in arrhythmogenesis was associated with a pronounced upregulation of SERCA2a and increased Cacna1c mRNA levels. Conclusion: Short-term ACEI treatment can provide protection against I/R injury-induced ventricular arrhythmias in healthy myocardium and this effect is associated with increased SERCA2a expression. CON ENA Calcium regulating proteins SERCA2a 100±20 304±13* CSQ 100±6 105±7 TRD 100±16 117±10 PLB 100±9 109±16 FKBP12 100±12 93±

    Expression and regulation of type 2A protein phosphatases and alpha4 signalling in cardiac health and hypertrophy

    Get PDF
    Abstract Cardiac physiology and hypertrophy are regulated by the phosphorylation status of many proteins, which is partly controlled by a poorly defined type 2A protein phosphatase-alpha4 intracellular signalling axis. Quantitative PCR analysis revealed that mRNA levels of the type 2A catalytic subunits were differentially expressed in H9c2 cardiomyocytes (PP2ACb[PP2ACa[PP4C[PP6C), NRVM (PP2ACb[PP2ACa = PP4C = PP6C), and adult rat ventricular myocytes (PP2ACa[ PP2ACb[PP6C[PP4C). Western analysis confirmed that all type 2A catalytic subunits were expressed in H9c2 cardiomyocytes; however, PP4C protein was absent in adult myocytes and only detectable following 26S proteasome inhibition. Short-term knockdown of alpha4 protein expression attenuated expression of all type 2A catalytic subunits. Pressure overload-induced left ventricular (LV) hypertrophy was associated with an increase in both PP2AC and alpha4 protein expression. Although PP6C expression was unchanged, expression of PP6C regulatory subunits (1) Sit4-associated protein 1 (SAP1) and (2) ankyrin repeat domain (ANKRD) 28 and 44 proteins was elevated, whereas SAP2 expression was reduced in hypertrophied LV tissue. Co-immunoprecipitation studies demonstrated that the interaction between alpha4 and PP2AC or PP6C subunits was either unchanged or reduced in hypertrophied LV tissue, respectively. Phosphorylation status of phospholemman (Ser63 and Ser68) was significantly increased by knockdown of PP2ACa, PP2ACb, or PP4C protein expression. DNA damage assessed by histone H2A.X phosphorylation (cH2A.X) in hypertrophied tissue remained unchanged. However, exposure of cardiomyocytes to H2O2 increased levels of cH2A.X which was unaffected by knockdown of PP6C expression, but was abolished by the short-term knockdown of alpha4 expression. This study illustrates the significance and altered activity of the type 2A protein phosphatase-alpha4 complex in healthy and hypertrophied myocardium

    Ouabain treatment is associated with upregulation of phosphatase inhibitor-1 and Na+/Ca2+-exchanger and β-adrenergic sensitization in rat hearts

    No full text
    Cardiac glycosides are widely used in the treatment of congestive heart failure. While the mechanism of the positive inotropic effect after acute application of cardiac glycosides is explained by blockade of the Na +/K+-pump, little is known about consequences of a prolonged therapy. Here male Wistar rats were treated for 4 days with continuous infusions of ouabain (6.5mg/kg/day) or 0.9% NaCl (control) via osmotic minipumps. Electrically driven (1Hz, 35°C) papillary muscles from ouabain-treated rats exhibited shorter relaxation time (-15%) and a twofold increase in the sensitivity for the positive inotropic effect of isoprenaline. The density and affinity of β1- and β2- adrenoceptors as well as mRNA and protein levels of stimulatory (G sα) and inhibitory (Giα-2, G iα-3) G-proteins were unaffected by ouabain. Similarly, SR-Ca2+-ATPase 2A, phospholamban, ryanodine-receptor expression as well as the oxalate-stimulated 45Ca-uptake of membrane vesicles remained unchanged. However, mRNA abundance of the protein phosphatase inhibitor-1 (I-1) and the Na+/Ca2+-exchanger (NCX) were increased by 52% and 26%, respectively. I-1 plays an amplifier role in cardiac signaling. Downregulation of I-1 in human heart failure is associated with desensitization of the β-adrenergic signaling pathway. The present data suggest that the ouabain-induced increase in I-1 expression might be at least partly responsible for the increased isoprenaline sensitivity and increased expression of NCX for the accelerated relaxation after chronic ouabain in this model. © 2004 Elsevier Inc. All rights reserved.link_to_subscribed_fulltex

    Expression of constitutive nitric oxide synthase in rat and human gastrointestinal tract

    Get PDF
    AbstractThe aim of this study was to determine the expression of constitutive NO synthases (ecNOS and bNOS) at the protein level in rat and human gastrointestinal tract. We established a quantitative Western blotting method for detection and quantification of ecNOS and bNOS in both species. Human gastric fundus was further analyzed by immunohistochemistry. EcNOS expression at the protein level could be quantified in different organs of the rat gastrointestinal tract and in human gastric mucosal biopsies. Immunohistochemistry of gastric fundus revealed that immunoreactivity for ecNOS was localized mainly in the endothelium of small vessels. In rats, expression of bNOS at the protein level was highest in esophagus. By means of immunohistochemistry of human gastric fundus, immunoreactivity was detected mainly in the plexus of Auerbach. We conclude that isoforms of constitutive nitric oxide synthase can be identified and quantified at the protein level both in rat and human gastrointestinal tract. The presence of bNOS in nerve tissue supports previous observations that NO serves as a transmitter in non-adrenergic, non-cholinergic nerves in human esophagus and stomach. The observation that ecNOS has been found mainly in endothelial cells suggests the involvement of NO in the regulation of mucosal blood flow
    corecore