34 research outputs found

    The state-of-the-art progress in cloud detection, identification, and tracking approaches: a systematic review

    Get PDF
    A cloud is a mass of water vapor floating in the atmosphere. It is visible from the ground and can remain at a variable height for some time. Clouds are very important because their interaction with the rest of the atmosphere has a decisive influence on weather, for instance by sunlight occlusion or by bringing rain. Weather denotes atmosphere behavior and is determinant in several human activities, such as agriculture or energy capture. Therefore, cloud detection is an important process about which several methods have been investigated and published in the literature. The aim of this paper is to review some of such proposals and the papers that have been analyzed and discussed can be, in general, classified into three types. The first one is devoted to the analysis and explanation of clouds and their types, and about existing imaging systems. Regarding cloud detection, dealt with in a second part, diverse methods have been analyzed, i.e., those based on the analysis of satellite images and those based on the analysis of images from cameras located on Earth. The last part is devoted to cloud forecast and tracking. Cloud detection from both systems rely on thresholding techniques and a few machine-learning algorithms. To compute the cloud motion vectors for cloud tracking, correlation-based methods are commonly used. A few machine-learning methods are also available in the literature for cloud tracking, and have been discussed in this paper too

    Forecasting different dimensions of liquidity in the intraday electricity markets: A review

    Get PDF
    Energy consumption increases daily across the world. Electricity is the best means that humankind has found for transmitting energy. This can be said regardless of its origin. Energy transmission is crucial for ensuring the efficient and reliable distribution of electricity from power generation sources to end-users. It forms the backbone of modern societies, supporting various sectors such as residential, commercial, and industrial activities. Energy transmission is a fundamental enabler of well-functioning and competitive electricity markets, supporting reliable supply, market integration, price stability, and the integration of renewable energy sources. Electric energy sourced from various regions worldwide is routinely traded within these electricity markets on a daily basis. This paper presents a review of forecasting techniques for intraday electricity markets prices, volumes, and price volatility. Electricity markets operate in a sequential manner, encompassing distinct components such as the day-ahead, intraday, and balancing markets. The intraday market is closely linked to the timely delivery of electricity, as it facilitates the trading and adjustment of electricity supply and demand on the same day of delivery to ensure a balanced and reliable power grid. Accurate forecasts are essential for traders to maximize profits within intraday markets, making forecasting a critical concern in electricity market management. In this review, statistical and econometric approaches, involving various machine learning and ensemble/hybrid techniques, are presented. Overall, the literature highlights the superiority of machine learning and ensemble/hybrid models over statistical models

    Performance of Parabolic Trough Collector with Different Heat Transfer Fluids and Control Operation

    No full text
    Electricity generation from solar energy has become very desirable because it is abundantly available and eco-friendly. Mathematical modeling of various components of a Solar Thermal Power plant (STP) is warranted to predict the optimal and efficient operation of the plant. The efficiency and reliability of STPs are maximized based on different operating strategies. Opting for proper Heat Transfer Fluid (HTF), which is proposed in this paper, helps in reducing operating complexity and lowering procurement cost. The Parabolic Trough Collector (PTC) is the heart of STP, where proper focusing of PTC towards solar radiation is the primary task to maximize the outlet temperature of HTF. This maximum temperature plays a major factor due to diurnal solar radiation variation, and its disturbance nature, with the frequent startup and shutdown of STP, is avoided. In this paper, the PTC component is modeled from the first principle, and, with different HTF, the performance of PTC with constant and quadratic solar disturbances is analyzed along with classical control system designs. Through this, the operator will be able to choose proper HTF and resize the plant components depending on plant location and weather conditions. Furthermore, the thermal energy is collected for therminol oil, molten salt, and water; and its performance with different inputs of solar radiation is analyzed along with closed-loop controllers. Thermal energy extracted by therminol oil, molten salt, and water with constant solar radiation results in 81.7%,73.7% and 18.7%, respectively

    Analysis of Individual User Data Rate in a TDMA-RIS-NOMA Downlink System: Beyond the Limitation of Conventional NOMA

    No full text
    Non-orthogonal multiple access (NOMA) is playing a pivotal role in 5G technology and has the potential to be useful in future developments beyond 5G. Although the effectiveness of NOMA has largely been explored in the sum throughput maximization, the identification of individual user data rate (IDR) still remained an unexplored area. Previously, it has been shown that reconfigurable intelligent surfaces (RIS) can lead to an overall improvement in the data rate by enhancing the effective channel gain of the downlink NOMA system. When time division multiple access (TDMA) is clubbed with multiple RISs in a distributed RIS-assisted NOMA (TDMA-RIS-NOMA) downlink system, a point-to-point communication model is created between access point-to-RIS-to-user device. Due to this point-to-point communication model, optimization of the phase shifts provided by meta-atoms of each RIS is facilitated. The optimized phase shifts of meta-atoms maximize the equivalent channel gain between the access point to the user. In this scenario, the channel becomes saturated and signal-to-interference plus noise ratio (SINR) becomes a function of power coefficients only. In this study, the power coefficients are calculated to maximize the SINR of each user belonging to a NOMA cluster using a geometric progression-based power allocation method such that IDR reaches its upper bound. These observations are also verified using the recently published magic matrix-based power allocation method. There are two observations from this study: (i) the IDR is better in the case of the TDMA-RIS-NOMA downlink system than using downlink NOMA alone and (ii) irrespective of the number of meta-atoms and total cluster power, the upper bound of IDR cannot be increased beyond a certain limit for all users except the highest channel gain user. Because of the restricted upper bound for IDR, we suggest that the RIS-assisted downlink TDMA-NOMA system is more suitable for IoT applications, where minimum IDR can also suffic

    An Overview of Machine Learning, Deep Learning, and Reinforcement Learning-Based Techniques in Quantitative Finance: Recent Progress and Challenges

    No full text
    Forecasting the behavior of the stock market is a classic but difficult topic, one that has attracted the interest of both economists and computer scientists. Over the course of the last couple of decades, researchers have investigated linear models as well as models that are based on machine learning (ML), deep learning (DL), reinforcement learning (RL), and deep reinforcement learning (DRL) in order to create an accurate predictive model. Machine learning algorithms can now extract high-level financial market data patterns. Investors are using deep learning models to anticipate and evaluate stock and foreign exchange markets due to the advantage of artificial intelligence. Recent years have seen a proliferation of the deep reinforcement learning algorithm’s application in algorithmic trading. DRL agents, which combine price prediction and trading signal production, have been used to construct several completely automated trading systems or strategies. Our objective is to enable interested researchers to stay current and easily imitate earlier findings. In this paper, we have worked to explain the utility of Machine Learning, Deep Learning, Reinforcement Learning, and Deep Reinforcement Learning in Quantitative Finance (QF) and the Stock Market. We also outline potential future study paths in this area based on the overview that was presented before

    An Overview of Machine Learning, Deep Learning, and Reinforcement Learning-Based Techniques in Quantitative Finance: Recent Progress and Challenges

    No full text
    Forecasting the behavior of the stock market is a classic but difficult topic, one that has attracted the interest of both economists and computer scientists. Over the course of the last couple of decades, researchers have investigated linear models as well as models that are based on machine learning (ML), deep learning (DL), reinforcement learning (RL), and deep reinforcement learning (DRL) in order to create an accurate predictive model. Machine learning algorithms can now extract high-level financial market data patterns. Investors are using deep learning models to anticipate and evaluate stock and foreign exchange markets due to the advantage of artificial intelligence. Recent years have seen a proliferation of the deep reinforcement learning algorithm鈥檚 application in algorithmic trading. DRL agents, which combine price prediction and trading signal production, have been used to construct several completely automated trading systems or strategies. Our objective is to enable interested researchers to stay current and easily imitate earlier findings. In this paper, we have worked to explain the utility of Machine Learning, Deep Learning, Reinforcement Learning, and Deep Reinforcement Learning in Quantitative Finance (QF) and the Stock Market. We also outline potential future study paths in this area based on the overview that was presented before

    An Intelligent Motor Imagery Detection System Using Electroencephalography with Adaptive Wavelets

    No full text
    Classification of motor imagery (MI) tasks provides a robust solution for specially-abled people to connect with the milieu for brain-computer interface. Precise selection of uniform tuning parameters of tunable Q wavelet transform (TQWT) for electroencephalography (EEG) signals is arduous. Therefore, this paper proposes robust TQWT for automatically selecting optimum tuning parameters to decompose non-stationary EEG signals accurately. Three evolutionary optimization algorithms are explored for automating the tuning parameters of robust TQWT. The fitness function of the mean square error of decomposition is used. This paper also exploits channel selection using a Laplacian score for dominant channel selection. Important features elicited from sub-bands of robust TQWT are classified using different kernels of the least square support vector machine classifier. The radial basis function kernel has provided the highest accuracy of 99.78%, proving that the proposed method is superior to other state-of-the-art using the same database

    Performance Assessment of Bias Correction Methods for Precipitation and Temperature from CMIP5 Model Simulation

    No full text
    Hydrological modeling relies on the inputs provided by General Circulation Model (GCM) data, as this allows researchers to investigate the effects of climate change on water resources. But there is high uncertainty in the climate projections with various ensembles and variables. Therefore, it is very important to carry out bias correction in order to analyze the impacts of climate change at a regional level. The performance evaluation of bias correction methods for precipitation, maximum temperature, and minimum temperature in the Upper Bhima sub-basin has been investigated. Four bias correction methods are applied for precipitation viz. linear scaling (LS), local intensity scaling (LOCI), power transformation (PT), and distribution mapping (DM). Three bias correction methods are applied for temperature viz. linear scaling (LS), variance scaling (VS), and distribution mapping (DM). The evaluation of the results from these bias correction methods is performed using the Kolmogorov鈥揝mirnov non-parametric test. The results indicate that bias correction methods are useful in reducing biases in model-simulated data, which improves their reliability. The results of the distribution mapping bias correction method have been proven to be more effective for precipitation, maximum temperature, and minimum temperature data from CMIP5-simulated data
    corecore