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Abstract: Energy consumption increases daily across the world. Electricity is the best means that
humankind has found for transmitting energy. This can be said regardless of its origin. Energy
transmission is crucial for ensuring the efficient and reliable distribution of electricity from power
generation sources to end-users. It forms the backbone of modern societies, supporting various sectors
such as residential, commercial, and industrial activities. Energy transmission is a fundamental enabler
of well-functioning and competitive electricity markets, supporting reliable supply, market integration,
price stability, and the integration of renewable energy sources. Electric energy sourced from various
regions worldwide is routinely traded within these electricity markets on a daily basis. This paper
presents a review of forecasting techniques for intraday electricity markets prices, volumes, and price
volatility. Electricity markets operate in a sequential manner, encompassing distinct components such
as the day-ahead, intraday, and balancing markets. The intraday market is closely linked to the timely
delivery of electricity, as it facilitates the trading and adjustment of electricity supply and demand
on the same day of delivery to ensure a balanced and reliable power grid. Accurate forecasts are
essential for traders to maximize profits within intraday markets, making forecasting a critical concern
in electricity market management. In this review, statistical and econometric approaches, involving
various machine learning and ensemble/hybrid techniques, are presented. Overall, the literature
highlights the superiority of machine learning and ensemble/hybrid models over statistical models.
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Autoregressive Integrated Moving Average model with Exogenous inputs; ARMA: Autoregressive
Moving Average; ARX: Autoregressive with eXternal Model Input; BRP: Balance responsible
party; BSP: Balance service providers; CET: Central European time; CSP: Congestion service
providers; CO2: Carbon dioxide; DCGAN: Deep convolutional generative adversarial networks;
EPEX: European power exchange; EPIAS: Energy exchange Istanbul; ESN: Echo state network;
EXAA: Energy exchange Austria; FANN: Feed-forward artificial neural network; GAM: Generalized
additive model; GAMLSS: Generalized additive models for location scale and shape; GARCH:
Generalized autoregressive conditional heteroskedasticity; GIR: Generalized impulse response; GRU:
Gated recurrent units; HJB: Hamilton-Jacobi-Bellman; LASSO: Least absolute shrinkage and selection
operator; LOB: Limit order book; LSTM: Long-short term memory; LQC: LASSO, quantile regression
and a copula-modeled temporal structure; MAPE: Mean absolute percentage error; MDP: Markov
decision process; MIBEL: Iberian electricity market; MLP: Multi-layer perceptron; NEM: National
electricity market; NUTS: No-U-turn sampler; OMIE: OMI, Polo Español S.A.; OLS: Ordinary
least squares; PCA: Principal component analysis; PDF: Probability distribution function; PJM:
Pennsylvania, New Jersey, and Maryland; RES: Renewable energy sources; RMSE: Root mean
square error; RNN: Recurrent neural network; SVM: Support vector machine; SVR: Support
vector regression; TGE: Polish power exchange; TSO: Transmission system operators; VAR: Vector
autoregressive process; VWAP: Volume-weighted average price; WLS: Weighted least squares; XBID:
Cross border intraday project; XG-Boost: Extreme gradient boosting

1. Introduction

Electricity is an important commodity, but storing it in large quantities at grid level is costly.
Generation and consumption must always be balanced to ensure a stable operation of the energy
systems, avoid outages, manage supply and demand fluctuations, and other issues [1–6]. This balance
between supply and demand is ensured through a chain of electricity trading markets [5]. Traditionally,
electricity markets were controlled by government agencies. Liberalization of electricity markets in
Europe commenced in the early 1990s [3]. Electricity markets are specific to individual sovereign
states, with each country regulating its own market. However, in some regions, neighboring countries
may share and integrate their electricity markets through cross-border trading and interconnections,
and by promoting regional energy cooperation. Liberalization attracted more participants such as
producers, traders, and transmission system operators (TSOs) to the markets, leading to competition
in the generation, supply, transmission, and distribution of electric energy [4]. Initially, electric energy
production was mostly dependent on core sources like natural gas, oil, nuclear energy, and coal among
others. In recent years, non-programmable renewable energy sources (RESs) have been utilized by
many energy producers due to the rising price of fossil fuels, which have helped them to reduce the
overall energy production cost as well as carbon emissions [7]. The prioritization of renewables over
conventional power plants, driven by their minimal marginal cost, has resulted in participants adapting
their business models accordingly [8]. This shift has led to the emergence of new electricity trading
markets. Wind and solar energy are the predominant RES sought after in electricity markets. Their
zero marginal cost, combined with subsidies and incentives, has made producers actively participate
in these markets, aiming to maximize their profit [7–10]. Renewable energy participants must behave
like any other market participant, involving a commitment to a specific production level within the
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designated settlement period just as with conventional energy producers [11].
The introduction of distributed renewable generation caused an increase in the uncertainty of future

supply, and prices. Electricity demand is influenced by weather conditions such as temperature,
peak activity in commercial buildings, and fluctuation in the daily activities of the population. This
creates the price dynamics. To ensure the balance between generation and consumption, participants
forecast the production and demand before and/or during the day of settlement by using forecasting
methods [11, 12]. This forecast results in increased uncertainty in electricity prices due to the growing
share of renewable resources in markets, as well as variations in weather conditions and people’s
behavior. Consequently, it calls for the development of new prediction strategies. A review of
techniques such as statistical, machine learning, and ensemble/hybrid methods has been carried out
for different intraday electricity markets. This review primarily focuses on the European electricity
markets, with some inclusion of markets from other countries.

1.1. Background of electricity market

Electricity markets involve a wide array of participants, as shown in Figure 1, who play crucial
roles in the functioning and dynamics of the market. The roles of these participants fall into the
physical, administrative or market domain. The physical domain deals with the electricity production,
consumption, transmission and security of the system. Electricity producers, consumers (small and
large) and TSOs are the main actors in the physical domain. Producers generate electrical energy from
wind, solar power, water, etc., and to a notable extent from natural gas and coal. The high-voltage
electricity grid is operated by a TSO. A TSO is a regulated entity responsible for the operation, control,
and maintenance of the high-voltage transmission network. The TSO ensures the reliable and secure
transmission of electricity across the grid. It also includes manages and monitors the balance of supply
and demand in the grid. The administrative domain includes actors who manage the relationships
between customers and the market or grid operators. For example, they monitor actual consumption
and production and arrange the invoicing for their customers. There are different parties involved
in this, such as electricity suppliers, traders, balancing responsible party (BRP), balancing service
providers (BSPs) and congestion service providers (CSPs). Electricity suppliers conclude delivery
contracts with consumers and invoice them for all costs related to their electricity bills. To supply
their consumers, they purchase electricity on the wholesale market (forward futures, day-ahead and
intraday).

BRPs are market participants, such as electricity suppliers or large consumers, who have contractual
responsibilities to maintain the balance between their contracted electricity positions and actual
consumption or generation. They are accountable for ensuring that their injections or withdrawals
of electricity align with their contractual obligations. BSPs are entities that offer services to support
BRPs in balancing their positions effectively. A BSP provides tools, technologies, and expertise
to help BRPs manage their imbalances and maintain compliance with their contractual obligations.
A BSP may offer services like load forecasting, portfolio optimization, real-time monitoring, and
energy trading platforms. CSPs are market participants that focus on managing congestion within
the electricity transmission network. Congestion occurs when there is limited transmission capacity
to accommodate the flow of electricity between different areas or zones. A CSP provides services to
alleviate congestion, optimize the utilization of transmission infrastructure, and ensure the efficient and
secure transfer of electricity. They may offer services such as congestion management, transmission
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capacity allocation, congestion forecasting, or transmission system optimization. Together, the BRP,
BSP and CSP collaborate to ensure the stability of the electricity market, manage imbalances, and
optimize the utilization of transmission infrastructure, ultimately contributing to the reliable and secure
delivery of electricity to consumers, and the TSO oversees the overall operation and coordination of
market participants to ensure reliable grid operation and facilitate efficient electricity trading. The
market domain lists the different market platforms needed for all these transactions. It includes
retail market, wholesale market, balancing market, imbalance settlement, and congestion management
services. Different marketplaces are available for electricity trading. Mainly, the electricity delivery
time frame and form of transaction characterize these marketplaces.

The retail market is the part of the electricity market where electricity is sold directly to
end consumers. It involves the interaction between electricity retailers (suppliers) and individual
households, businesses or other electricity consumers. Retail market participants offer various pricing
plans and services to meet consumer demand. The wholesale market is where electricity is bought
and sold in bulk between electricity generators (producers) and electricity retailers, as well as other
market participants such as industrial consumers or electricity traders. It operates on a larger scale than
the retail market and involves the trading of electricity in larger quantities. The balancing market is
responsible for maintaining the balance between electricity supply and demand in real time. It deals
with any deviations or imbalances that occur between scheduled or contracted electricity supply and
actual consumption. Market participants, such as grid operators or BSPs, offer balancing services to
adjust supply or demand in response to fluctuations and ensure system stability. The spot market,
also known as the electricity spot market or day-ahead market, is where electricity is traded for
immediate or near-future delivery. It involves the buying and selling of electricity for specific time
periods, usually ranging from a few hours to a day ahead. Spot market prices are typically determined
through market mechanisms such as auctions or continuous trading, based on supply and demand
dynamics. The connection between these markets lies in the overall process of electricity generation,
transmission, and consumption. Electricity is generated in the wholesale market, where producers sell
it to retailers and other market participants. The retailers, in turn, sell electricity to end consumers
in the retail market. The balancing market ensures that supply and demand are balanced in real
time, while the spot market facilitates the trading of electricity for immediate delivery or near-future
time periods. Electricity trading is regulated through long-term agreements and short-term trading
for future energy requirements. Long-term agreements involve over-the-counter trading and power
purchase agreements. In over-the-counter trading, the electricity is traded by direct negotiation between
two parties considering the required prices and volumes, whereas in power purchase agreements, the
participants, i.e., producers and consumers, sign an agreement to earn long-term income for long-term
electricity provision.

Short-term electricity spot markets exhibit variations in transparency across different regions and
jurisdictions. This includes the day-ahead market and intraday market which trade for either the next
day or the current day, respectively. Market operators typically provide publicly available information
on market prices, volumes, and other relevant market data. This allows market participants and
stakeholders to access and analyze market information, assisting utility companies or BRPs in making
timely electricity transactions to meet demand and address forecast deviations in production and
consumption. Thus, the short-term electricity markets minimize the risks to participants via cost-
effective electricity production. These markets are organized sequentially, encompassing day-ahead,
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intraday, and balancing markets, each serving distinct objectives and operations to satisfy the demand
and supply at each time.

1.2. Day-ahead market

The day-ahead market is responsible for electricity trading based on the settlement period to be
delivered after a day. Electricity for the next day is traded on day-ahead auctions for a dedicated
hour or quarter-hour interval as blocks. Figure 2 shows the time framework to forecast for the day-
ahead market that has been used to plan the market price forecast in the day-ahead energy markets. In
this, BRP submits the expected production or consumption in each hour for the following day to the
TSO [13].

Figure 2. Time framework to forecast for the day-ahead energy market [12, 17].

The transactions in the day-ahead market occur on a daily basis; it permits the market participants
to buy and sell the energy for the next day and to form a balance between the production and/or the
consumption needs and their contract-based commitments a day before. The day-ahead market works
in such a way that the demand and supply of electricity on an hourly basis are initially ensured by
sorting all of the available offers and bids, forming the supply and demand curves respectively. Based
on that, an average consumption amount is decided that is required to be produced by the generating
companies in a given time frame. Any deviations from the projected production are handled by the
intraday and balancing markets [11, 18]. Usually, the day-ahead market gets closed at noon each day.

1.3. Intraday market

To self-balance the deviations that occurred in the day-ahead electricity production, market
participants depend on the intraday electricity markets. The intraday markets involve activities required
to be performed on the day of delivery by continuing the trading until the moment of delivery [19].
The main objective of the intraday market is to help market participants balance the contract-based
electricity commitments to avoid unnecessary charges. Trading in the intraday market is useful because
balancing services provided by the TSO are more expensive than the use of a self-balancing mechanism
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through the intraday market. In addition to that, the TSO can penalize the market participants for
frequent imbalances in energy production as well as lead to a breach of contract [19]. This market
does not only create energy trading opportunities for market participants but it also provides a balanced
system before handling the net balancing by the TSO to reduce the energy imbalance [20]. Considering
the case of the German market, the intraday trading of hourly products starts at 3 PM every day i.e.
three hours after the closure of day-ahead trading, and continues up to 5 minutes prior to delivery of
each product [19, 21, 57].

Even though the intraday markets hold less importance than the day-ahead markets due to lower
trading and hedging activities, they still plays a vital role in ensuring system stability. Even a
small contribution from the intraday market has the potential to reduce the need for the activation
of electricity reserves and control energy by the TSO, reinforcing grid stability. Imbalances in the
electricity market lead to charges imposed on individual market participants. As a result, market
participants strive to minimize the use of control energy for two key reasons. First, utilizing balancing
services is more costly than self-balancing through the intraday market. Second, the TSO may apply
sanctions to market participants who consistently generate imbalances, potentially jeopardizing their
balancing contracts [5]. Post-closure of the intraday market balancing energy is used to fill the gap
between the generation and consumption. The intraday electricity market is beneficial to market
participants as it provides flexibility in portfolio management, risk mitigation, and the ability to manage
imbalances. It enables participants to optimize their positions, respond to real-time market conditions,
and capitalize on favorable pricing opportunities, ultimately enhancing profitability and supporting the
integration of renewable energy [5, 19].

1.4. Balancing market

This market balances the scheduled deviations or imbalance volume in the electricity market. The
scheduled deviation is the difference between the planned net electrical energy exchange with the grid
and the actual exchange measure in real time [14, 15]. It carries out three important activities: balance
planning, balancing service provision and imbalance settlement. For balance planning, the BRP
submits day-ahead energy schedules to the TSO. However, the stochastic nature of RES production and
random electricity demand/consumption is dependent on people’s behavior, which leads to deviations
in scheduled generation and to system imbalance, which is the net sum of the imbalance volumes of all
BRPs. A positive imbalance volume means that the system is short where the actual electricity supply
falls short of the scheduled or contracted supply relative to the demand, and a negative imbalance
means that the system is long where the actual electricity supply exceeds the scheduled or contracted
supply relative to the demand [13]. In response to that, balancing service provision, which is normally
activated by the TSO, helps to obtain the required amount of electricity in real time to balance the
system [22, 23]. Finally, an imbalance settlement is carried out. An imbalance settlement is the
financial settlement of the scheduled deviations or imbalance volume, whereby the BRP needs to pay
the imbalance price to the TSO [14, 15]. The TSO applies some pre-defined rules to calculate the
imbalance price by using the total balancing cost and total system imbalance for a specific unit of
time like a 15-minute period. There are two imbalance price mechanisms; one is applied for energy
surplus/oversupply and the other for energy shortage/undersupply. A BRP with a surplus receives the
long imbalance price the reduce the system imbalance from the TSO and with a shortage needs to
pay the short imbalance price to the TSO [13–15, 23]. For example, with a perfect forecast, when all

AIMS Energy Volume 11, Issue 5, 918–959.



925

volumes are perfectly sold on the day-ahead market, the earnings would be 27.51 €/MWh. But, the
imbalances reduce the earnings by 2.48 to 25.03 €/MWh [13]. Balancing the market and especially
the imbalanced prices is of interest for spotting market participants.

Some of the specific intraday market studies that have been conducted on a global level include
the German and Nord Pool markets. Table 1 and Figure 3 show different intraday markets. The
differing day-ahead closure times and intraday open times in electricity markets across countries or
regions arise from a combination of factors, including market design, demand patterns, regulatory
frameworks, and the integration of renewable energy. These variations are strategically set to align
with local demand fluctuations, ensure efficient trading, and adhere to regulatory guidelines. The
increasing incorporation of renewables introduces an additional layer of complexity, necessitating
flexible scheduling mechanisms to accommodate intermittent generation. Ultimately, the diverse
factors at play drive the customization of market timings to optimize energy supply, trading, and grid
stability.

12:00 12:0000:00 00:00 Delivery time

DA EPEX

DA NORD POOL

DA OMIE

DA PJM

ID EPEX

ID NORD POOL

ID OMIE

ID PJM

Day-ahead Trading Intra-day Trading

Today (Day D) Tomorrow (Day D + 1)Yesterday (Day D - 1)

15:00

14:00

14:00

18:30

h - 5 min

h - 60 min

h - 60 min

h - 60 min

00:00 10:30

Figure 3. Different intraday markets sessions.

1.5. Importance of intraday market forecasting

Forecasting plays an important role in energy markets to maximize profit and optimize decision-
making [4, 17, 24]. In order to make the decision for energy companies at the corporate level, these
forecasts become the fundamental inputs. In the short-term electricity market, portfolio managers use
price forecasts with a reasonable level of accuracy to adjust the bidding strategy reduce the risk and
increase profit by managing their production and consumption. Participants have to decide how much
energy is required for a bid. The decision for this amount is made based on imperfect knowledge
of the generation and consumption of energy in the future, in the given amount of time before the
actual delivery of the energy, by using the forecasting strategies based on available past data of energy

AIMS Energy Volume 11, Issue 5, 918–959.



926
Ta

bl
e

1.
In

tr
ad

ay
m

ar
ke

ts
(T

im
e

co
rr

es
po

nd
s

to
th

e
re

sp
ec

tiv
e

tim
e

zo
ne

s)
.

Po
w

er
ex

ch
an

ge

pa
ra

m
et

er
s

N
or

d
Po

ol
E

PE
X

Sp
ot

G
M

E
PJ

M
O

T
E

M
IB

E
L

E
PI

A
S

T
G

E
N

E
M

C
ou

nt
ri

es

in
vo

lv
ed

D
en

m
ar

k,
G

er
m

an
y,

Fi
nl

an
d,

L
at

vi
a,

L
ith

ua
ni

a,
N

or
w

ay
,

Sw
ed

en
,U

K

A
us

tr
ia

,G
er

m
an

y,

B
el

gi
um

,

L
ux

em
bo

ur
g,

U
K

,

Fr
an

ce
,N

et
he

rl
an

ds
,

Sw
itz

er
la

nd

Fr
an

ce
,A

us
tr

ia
,

It
al

y,
G

re
ec

e,

Sl
ov

en
ia

,M
al

ta
,

Sw
itz

er
la

nd

U
ni

te
d

St
at

es

of
A

m
er

ic
a

C
ze

ch
R

ep
ub

lic
Sp

ai
n,

Po
rt

ug
al

Tu
rk

ey
Po

la
nd

A
us

tr
al

ia

Fo
un

da
tio

n
ye

ar
20

02
20

08
20

00
20

02
20

01
19

97
20

15
19

99
19

98

Tr
ad

ed
vo

lu
m

e

in
20

20
99

5
T

W
h

61
4.

8
T

W
h

30
6.

6
T

W
h

80
9.

8
T

W
h

26
.8

5
T

W
h

26
2

T
W

h
24

3.
2

T
W

h
20

4
T

W
h

Sh
or

te
st

tr
ad

e
un

it
1

ho
ur

1
ho

ur
an

d

1/
2

ho
ur

s
in

G
re

at
B

ri
ta

in

1
ho

ur
1/

12
ho

ur
s

1
ho

ur
1

ho
ur

1
ho

ur
1

ho
ur

5
m

in

C
ur

re
nc

y
N

O
K

,S
E

K
,

E
U

R
,G

B
P

E
U

R
E

U
R

U
SD

C
Z

K
E

U
R

Tu
rk

is
h

L
ir

a
PL

N
,E

U
R

A
U

D

Pa
rt

ic
ip

an
ts

in
20

18
36

0
28

9
28

3
11

3
70

0
74

7
79

50
4

M
ar

ke
to
ff

er
in

g
D

ay
-a

he
ad

tr
ad

in
g

an
d

in
tr

ad
ay

tr
ad

in
g

D
ay

-a
he

ad
,i

nt
ra

da
y,

Fr
en

ch
ca

pa
ci

ty
,

ph
ys

ic
al

fu
lfi

llm
en

ts
er

vi
ce

s,

lo
ca

lfl
ex

tr
ad

in
g

D
ay

-a
he

ad
,i

nt
ra

da
y,

da
ily

pr
od

uc
ts

,

en
vi

ro
nm

en
tm

ar
ke

t,

an
ci

lla
ry

se
rv

ic
es

m
ar

ke
t

D
ay

-a
he

ad
sp

ot
,

re
al

-t
im

e
ba

la
nc

in
g,

ca
pa

ci
ty

cr
ed

its
m

ar
ke

t

D
ay

-a
he

ad
,i

nt
ra

da
y,

bl
oc

k
an

d
ba

la
nc

in
g

m
ar

ke
t

D
ay

-a
he

ad
m

ar
ke

t

an
d

in
tr

ad
ay

m
ar

ke
t

D
ay

-a
he

ad
m

ar
ke

t,

in
tr

ad
ay

m
ar

ke
t,

ba
la

nc
in

g
po

w
er

m
ar

ke
t,

an
ci

lla
ry

se
rv

ic
e

D
er

iv
at

iv
es

(f
ut

ur
es

),

da
y-

ah
ea

d,

in
tr

ad
ay

D
ay

-a
he

ad
,i

nt
ra

da
y,

fu
tu

re
s,

an
ci

lla
ry

se
rv

ic
es

m
ar

ke
t

bi
la

te
ra

lc
on

tr
ac

ts

D
ay

-a
he

ad

cl
os

ur
e

tim
e

(C
E

T
)

12
:0

0
12

:0
0

12
:0

0
10

:3
0

11
:0

0
12

:0
0

00
:3

0
15

:3
0

12
:3

0

In
tr

ad
ay

op
en

tim
e

(C
E

T
)

14
:0

0
15

:0
0

12
.5

5
18

:3
0

15
:0

0
14

:0
0

18
:0

0
14

:0
0

-

In
tr

ad
ay

pr
od

uc
ts

15
m

in
,3

0
m

in
,

ho
ur

ly
,a

nd
bl

oc
k

ho
ur

ly
,h

al
f-

ho
ur

ly
,

an
d

qu
ar

te
r-

ho
ur

ly
ho

ur
ly

ho
ur

ly
ho

ur
ly

ho
ur

ly
ho

ur
ly

ho
ur

ly
15

m
in

,3
0

m
in

In
tr

ad
ay

cl
os

ur
e

tim
e

60
to

45
m

in
ut

es

be
fo

re
de

liv
er

y

30
m

in
to

5
m

in

be
fo

re
de

liv
er

y

60
m

in
ut

es

be
fo

re
de

liv
er

y

65
m

in
ut

es

be
fo

re
de

liv
er

y

5
m

in
ut

es

be
fo

re
de

liv
er

y

60
m

in
ut

es

be
fo

re
de

liv
er

y

60
m

in
ut

es

be
fo

re
de

liv
er

y

60
m

in
ut

es

be
fo

re
de

liv
er

y
-

B
id

di
ng

ty
pe

D
ou

bl
e-

si
de

d
D

ou
bl

e-
si

de
d

D
ou

bl
e-

si
de

d
D

ou
bl

e-
si

de
d

D
ou

bl
e-

si
de

d
D

ou
bl

e-
si

de
d

D
ou

bl
e-

si
de

d
D

ou
bl

e-
si

de
d

Si
ng

le
-s

id
ed

A
dj

us
tm

en
tm

ar
ke

t
In

tr
ad

ay
tr

ad
in

g
In

tr
ad

ay
tr

ad
in

g
D

ai
ly

pr
od

uc
ts

an
d

fo
rw

ar
d

B
id

-q
ua

nt
ity

ca
n

be
ch

an
ge

d
til

l

ga
te

cl
os

ur
e

In
tr

ad
ay

m
ar

ke
t

In
tr

ad
ay

m
ar

ke
t

In
tr

ad
ay

m
ar

ke
t

In
tr

ad
ay

m
ar

ke
t

In
tr

ad
ay

m
ar

ke
t

Pr
ic

in
g

ru
le

Z
on

al
pr

ic
in

g
Z

on
al

pr
ic

in
g

Z
on

al
pr

ic
in

g
N

od
al

pr
ic

in
g

Z
on

al
pr

ic
in

g
Z

on
al

pr
ic

in
g

Z
on

al
pr

ic
in

g
Z

on
al

pr
ic

in
g

Z
on

al
pr

ic
in

g

AIMS Energy Volume 11, Issue 5, 918–959.



927

production [25]. Production forecasts have become a dominant part of renewable energy production
over the last two decades. During the initial days, these forecasts were used to plan production but,
with market liberalization, they are also increasingly being used when the energy is being sold to avoid
imbalance prices [2].

Intraday demand forecasting helps in the efficient dispatch of generation, renewable integration,
and frequency control. An accurate short-term demand forecast minimizes the generation cost by
communicating dispatch instructions to utilities. It also prevents over- and under-production and hence
minimizes the control frequency rate. Traders use this forecast to calculate future electricity prices, and
on that basis, a profitable generator can be selected. As the forecast is dependent on different factors
such as weather conditions on that particular day, people’s behavior, and unavoidable events like plant
outages, it leads to errors in the actual and the forecasted energy production and demand.

To balance the gap in production and consumption, minimize the imbalance in prices, and gain
high profits, BRPs and traders depend on intraday forecasting [21]. As the lead-time of the forecast
determines the efficiency of the forecast, intraday forecasting is more accurate than day-ahead as it
considers the updates that are available in time closer to the actual delivery of the energy. The difference
between the previously forecasted day-ahead profile and the more precise intraday forecast is called
the forecast error. Errors in RES forecasting have become an important source of liquidity which
influences the prices. Wind forecasting errors have been found to have a quantified impact of 2–
3 €/MWh per GWh of error, indicating a significant influence on electricity prices. On the other
hand, solar forecasting errors exhibit a varying impact depending on the direction of the error. Positive
forecasting errors result in a quantified impact of 2€/MWh per GWh, while negative forecasting errors
have a smaller impact at less than 1 €/MWh per GWh. These quantifications highlight the importance
of accurate wind and solar forecasts in managing electricity pricing and optimizing renewable energy
integration [8]. When the forecast changes from a day-ahead forecast to an intraday forecast, the error
gets reduced significantly [18, 25, 26]. Market participants can trade the quantity difference between
day-ahead and intraday forecasts to self-balance this gap [5]. Along with the improvement of the
forecasting, the deviation and demand for the balancing energy also go on decreasing, and hence it has
resulted in the establishment of intraday markets in European countries to allow adjustment [18]. The
forecasting methods still have limited accuracy and it depends on the accuracy of the prediction tool
and previous data.

2. Materials and method

2.1. Intraday market forecasting techniques

The primary objective of this paper is to provide an overview of different techniques used in the
literature for forecasting intraday electricity prices and volume, i.e., the number of trades, and price
volatility in intraday electricity markets. The forecasting methodologies are categorized into three main
models: statistical/econometric, machine learning, and ensemble/hybrid methods, based on various
forecasting parameters. This section will provide detailed explanations of all of the methodologies
employed for intraday electricity forecasting.

Overview of modeling approaches:

• Statistical or econometric approaches, which involve direct applications of statistical techniques
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based on the available historical data to predict future values.
• Machine learning techniques, which combine elements of learning, evolution, and fuzziness to

create approaches that are capable of adapting to complex dynamic systems [27, 28].
• Ensemble techniques, which involve creating and then combining multiple models to obtain

improved results and hybrid methods, which combine different approaches or techniques to create
a more comprehensive and effective model.

Firstly, the literature review on statistical/econometric methods is presented, followed by machine
learning and ensemble/hybrid techniques in the second and third sections, respectively. Table 2 presents
an overview of the various forecasting techniques employed in the context of intraday electricity
forecasting.

Table 2. Forecasting techniques.

Models Targets Techniques

Statistical/
Econometric

Prices

Autoregressive integrated moving average model with exogenous inputs (ARIMAX) [29],
Auction-curves-based econometric model [30],
Standard econometric model [32],
Second-order Hamilton–Jacobi–Bellman (HJB) equation [33],
Vector autoregressive (VAR) model [34],
Markov decision process (MDP) model [35],
Principal component analysis (PCA) [50],
Least absolute shrinkage and selection operator (LASSO) models [49],
LASSO estimated linear regression model [61],
LASSO regularized linear regression model [63],
Generalized additive models for location scale and shape (GAMLSS) [62],
LASSO, quantile regression and a copula-modeled temporal structure (LQC),
Adjusted quantile lines (AQL) and Point forecasts-based approaches [57]

,

Volume

Limit order book (LOB) Model [41],
Hawkes process [44],
Generalized additive model (GAM) [38],
Rolling window forecasting [39],
Maximum likelihood function [39],
Jacobi process model [40],
Point process models [42],
Ordinary least squares (OLS) regression, Quantile
regression, Autoregressive moving averages (ARMA) [20]

Continued on next page
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Models Targets Techniques

Price
Volatility

Multiple regression models [5],
Nash equilibrium model [36],
Autoregressive model with exogenous input (ARX) and Probit model [31],
Regression models [8],
Historical market simulator model [43],
Vector autoregressive process (VAR) framework and generalized
Impulse response (GIR) simulations [45],
Regression models [26]

Machine
Learning

Prices

Neural networks-based models: Multi-layer perceptron (MLP),
Recurrent neural network (RNN) [46],
Multiple neural network models [47],
Long-short term memory (LSTM) [51],
Echo state network (ESN), Gaussian probabilistic ESN [7],
Multivariate elastic net regression model [54],
LASSO and elastic net techniques [55],
LSTM, Deep convolutional generative adversarial networks (DCGAN),
No-U-turn sampler (NUTS) algorithms [56],
Deep reinforcement learning (DRL) algorithms [58]

Volume Feed-forward artificial neural network (FANN) [60]

Price
Volatility

Normalizing flow model [37]

Ensemble/
Hybrid

Prices

Gradient boosting trees and linear quantile regression [48],
Linear regression and random forest approach [52],
Multiple linear regression, Generalized autoregressive conditional
heteroskedasticity (GARCH), Support vector regression (SVR) models [27],
Hybrid SVR and FANN [64],
Extreme gradient boosting (XG-Boost), Random forests, and RNN [53]

Volume
Supervised learning methods - linear models,
Tree based methods [59]

2.2. Statistical/Econometric approaches

Traditionally, statistical approaches have been applied for the forecasting of electricity. Such
models are useful for forecasting different parameters or their volatility based on linear and stationary
datasets [65]. A statistical or econometric model uses a mathematical combination of past values of
prices, and/or past or present values of exogenous variables such as weather forecasts, consumption and
production figures, renewable energy forecasts, etc. Typically, they work on approaches that include
the addition or multiplication of the previous data. If the predicted variable is the sum of several
components, the approach can be considered as additive and if the approach contains multiplication
of several factors, then it is multiplicative. The most popular among them is the additive approach.
Statistical models are attractive because they can be argued to be based on physical models and thus
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provide insight into their behavior which is helpful for engineers and TSOs in the development of new
models. However, they are often criticized for their limited ability to model the nonlinear behavior
of parameters and related fundamental variables [28]. These models are not able to capture the non-
linearity and complexity present in them. It results in the accuracy of such models being lower than
those of the machine learning models and ensemble/hybrid models [65].

2.2.1. Prices

An ARIMAX-based experiment was carried out on the European Power Exchange (EPEX)
continuous intraday market [29]. In this, continuous intraday prices were taken as endogenous
parameters, and 15-minute auction prices, the actual total load, and the onshore wind in-feed were
included in the exogenous parameters list to observe their effects on the price level and its variability.
The model framework has significantly facilitated understanding of the behavior of driving factors of
the intraday market prices. In the future, more exogenous variables can be employed to understand the
correlation of the model and variables along with its tuning of the internal parameters of the model.

Kulakov and Ziel [30] designed novel auction-curves-based econometric models such as a simple
linear naı̈ve model, a non-linear model, and a combination model to forecast the intraday electricity
prices to examine the effects of errors in solar and wind energy forecasts on the intraday prices. The
error in renewable forecasts was taken as the magnitude to shift the day-ahead supply curve to obtain an
approximation of the intraday supply curve and the intraday price was calculated from the intersection
of the approximated supply curve and demand curve as shown in Figure 4. Assuming the forecast
error of 2500 MW, even though the shapes and the distances between the day-ahead and intraday
curves were identical on both sides, the only difference between them was the realized demand size
i.e. low demand in Figure 4(a) and high demand in Figure 4(b). The results of this study indicated
that the impact of forecast error and its volatility on intraday prices are nonlinear. Furthermore, the
approximated demand curve can be employed to check for model performance, and the use of intraday
prices a few hours before delivery can provide better results.

An econometric model was developed to predict the price of electricity in 15-minute contracts over
the course of a day, using the high-frequency intraday data, the fundamental supply and demand data,
and the forecasts of solar and wind power generation [32]. The model was then refined to include
the slope of the merit order curve, the changes in neighboring 15-minute contracts and the 15-minute
intraday auction price. As shown in Figure 5a, the merit order is a ranking of available sources of
energy in ascending order of their short-run marginal costs of production [66]. The merit order curve
with renewable power in-feed shifts the curve to the right; as a consequence, if demand is low, the
electricity price decreases by a small amount; however, if demand is high, the electricity price decreases
as well by a much larger amount. The results demonstrated a statistically significant and consistently
negative trend in autoregressive price changes, regardless of the time of day. Moreover, changes in
neighboring contracts have a positive impact on the intraday prices for a given contract. A threshold
regression model was used for calibration to study the dependence of the merit order curve slope on
intraday prices. It was concluded that negative and positive renewable forecasts affect intraday prices
asymmetrically i.e. prices are more affected in high-demand regimes as shown in Figure 5b.
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Figure 4. A toy example of an electricity market with the distance between day-ahead and
intraday supply curves being dependent only on a negative forecast error of 2500 MW [30].

Glas et al. [33] modeled an optimal hourly trading and energy generation strategy by using a second-
order Hamilton-Jacobi-Bellman equation and found the approximate solution for the German-Austrian
continuous intraday market. The model has incorporated wind energy, conventional units, prices,
pay off and value functions like the half-spread as explanatory parameters. Results indicated that the
absolute trading rate value increases to nearly 15 hours as half-spread and immediate price impact are
minimal in that area; the results also indicated that, when the execution price goes below the cheapest
power plant marginal cost, it is better for the agent to buy electricity and reduce production.

Hu et al. [34] developed a multivariate and dynamic model known as a vector autoregression (VAR)
model to analyze the response of fundamental variables and investigate the imbalance caused by prices
in the Swedish intraday market. The important variable was intraday price premia (i.e., the difference
between the intraday electricity price and the day-ahead price), whereas intraday flow, transmission
congestion, forced outages of nuclear power plants, load forecast error, error in the wind forecast, and
non-wind forecast error were used as the exogenous variables. The findings of this study indicated that
wind power forecast errors, non-wind power forecast errors and load forecast errors were significant to
explain the spread in day-ahead and intraday prices. The addition of the congestion variable resulted in
robust forecast performance for the model consisting of intraday flow and non-wind power generation
and consumption as variables. Moreover, the wind forecast errors have shown a negative impact on
intraday prices, and no influence was shown by unplanned (forced) outages. Further work needs to be
done to understand intraday market functioning through microstructure analysis.

A Markov Decision Process (MDP) was used to formulate the bidding problem for the Spanish
intraday market MIBEL by considering the random electricity prices and uncertain wind production
forecasts [35]. The problem has been optimized with a multi-stage stochastic dual dynamic
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(a) Merit order of residual power plants in Germany 2008 [67].

(b) The merit order effect, is caused by a shift of the residual electricity supply curve due to the renewables with low
marginal costs.

Figure 5. The merit order effect.

programming algorithm. It has been observed that the model beats the conservative spot-only trading
strategy, a deterministic planner, and an industry-developed solution. Modeling complex bidding
functions and improved wind production forecasts increased the value of intraday trading. In the future,
the model can be improved with the inclusion of more frequent data on wind production forecasts.

A principal component analysis (PCA) method to average point forecasts was designed to
automatically aggregate the prediction information of models with different calibration windows [50].
To test the proposed methodology, the authors utilized multiple datasets obtained from the German
market. The day-ahead and intraday prices were predicted based on the inputs such as the day-ahead
and volume-weighted average price (VWAP) of the last 15 minutes before forecasting, whereas day-
ahead prognosis, wind and solar generation forecasts were included as exogenous variables. Results
indicated that the use of the best set of calibration windows has outperformed the averaged windows
and weighted averaged windows averaging strategies.

Uniejewski et al. [49] presented a method to select explanatory variables and forecast very short
prices in the German intraday market. This method used the LASSO to select the important variables
to forecast intraday prices. It was found that the recent intraday price and day-ahead price that
corresponds to the same hour were the best explanatory variables. The LASSO-estimated model
with specific tuning parameters outperformed the naı̈ve benchmark model. The study revealed that
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parsimonious autoregressive–exogenous-type models can perform well.
A linear regression model with LASSO estimation was employed to quantify the effects of wind

and solar generation forecast errors on the hourly electricity prices [61]. The study utilized the LASSO
estimation technique and the Hannan-Quinn criterion to determine the number of non-zero parameters
for estimation. The methodology was applied to the German intraday market and encompasses the
interdependence between the German-Austrian EPEX and the Energy Exchange Austria (EXAA) day-
ahead market. The model explained the seasonal and autoregressive effects of the day-ahead prices on
the intraday prices. The investigation revealed that the model exhibited superior performance when
analyzing the time-varying and asymmetric renewable forecast errors. Additionally, it was discovered
that the intraday prices remained unaffected by positive or negative forecasts of renewable generation.
A linear regression model employing LASSO regularization was introduced to forecast the intraday
electricity prices.

A linear regression model using LASSO regularization was presented to forecast the intraday
electricity price in the German intraday market [63]. The VWAP index prediction is made four
hours before delivery by using various LASSO-estimated models that are developed by considering
variables such as past intraday prices, day-ahead prices, partial intraday prices and exogenous variables
(historical and predicted demand, generation, and weather). Finally, forecast averaging of LASSO and
naı̈ve forecast models is carried out to obtain more precise and robust predictions. The numerical
results showed high accuracy compared to naı̈ve benchmark models in terms of point forecasting, still,
further research can be made in the area o forecasting the full descriptive trajectories along with using
more machine learning-based algorithms.

Narajewski and Ziel [62] performed probabilistic forecasting of hourly prices by simulating the
trajectories for each trading window in the intraday market to receive a realistic ensemble to allow
for more efficient intraday trading. Assuming that the price difference in the German intraday
market follows the mixture of various distributions such as Dirac and the Student’s t-distributions,
a generalized additive model (GAM) was used to fit them. Logistic regression was used to estimate the
mixing term. The value and volatility were modeled by using the autoregressive and no-trade effects
of load and forecast of wind and solar production, and by accounting for the non-linearity in e.g.
time to maturity. The comparisons with the benchmark models showed that the different versions of
probabilistic forecasting models performed better for the last 3 hours of trading. The study has shown
that the inclusion of the cross-border intraday project (XBID) can reduce market volatility. Future
research should concentrate on adding the traded volume or price of nearby hours as repressors in the
forecasting model.

Serafin et al. [57] introduced a profitable trading strategy for generating the short-term path forecast
of the German intraday electricity prices. A novel forecasting framework was developed to determine
the prediction bands by using a large number of path forecasts or by using probabilistic price forecasts
to find approximate bands. A time-dependent price threshold on time was used for trading activities,
and when exceeded it showed a strong opportunity to sell electricity. In addition to that, six different
methods to generate prediction bands were analyzed, namely the LQC, adjusted quantile lines (AQL),
student’s t-distribution, similar-day method, LASSO bootstrap, and LASSO point. A case study on
the German intraday market revealed that in terms of energy score the path forecasts showed better
performance than the two benchmark models i.e., the similar-day method and student’s t-distribution
method. The result of the study revealed that the proposed LQC approach with increased computational
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burden ensured higher trading profits, while the less complex AQL method based on a probabilistic
forecast offered a reasonable trade-off but generated less profit than LQC, also, LASSO bootstrap was
the best performer. In the future, path forecasts can be improved by using a more realistic temporal
dependence structure.

2.2.2. Volume

Martin and Otterson [41] presented a limit order book (LOB) approach to model the German
intraday market through the simulation of historic data for optimal electricity trading for any moment in
the trading window for any delivery hour. The number of transactions, VWAP, and traded volume data
from the German intraday market were considered as the information to build the simulation model.
The results showed a substantial improvement in performance relative to those obtained based on the
historic transactions data via the mean and median error method.

Favetto [44] shed light on the presence of a self-excitement phenomenon in the European intraday
electricity market, raising the question of understanding its underlying causes. Possible explanations
may involve economic factors, such as price convergence due to adjustments in supply and demand
at the end of the trading period, or technical implications related to fine adjustments in electricity
production. Additionally, the research primarily focused on analyzing trade dates, especially under
the condition of considering self-excitation as a potential source of endogeneity. A future perspective
involves examining the pricing process in the European market while considering exogenous variables
and seasonality.

Kath and Ziel [38] derived a model for electricity trading to forecast optimal order execution in
the German intraday market. The variables such as order book depth, time to delivery and different
trading regimes like XBID trading were considered for optimization purposes. Two GAM models
were modeled to fit the minute-based data to evaluate the impact of the temporary and permanent
markets. The evidence from this study suggested that the relationships between spreads and lead
time, trading volumes, and times of trading can be effectively modeled by penalized splines. It has
also been found that bid-ask spread levels as shown in Figure 6 notably increase one hour before
delivery when the XBID orders stop. A comparison of a GAM with the benchmark models explained
that complex computation serves better to lower spread but only for trading nearly 90 minutes before
delivery; however, a large trade in that phase causes more GAM calculation which results in non-
optimal trading. The authors stated that consideration of only the VWAP can be problematic and that
optical execution should hence be considered for the study. Quarter-hourly trading can be analyzed
and modeled to get further insights into the intraday market.

Narajewski and Ziel [39] presented a method utilizing a rolling window forecasting strategy to
estimate and simulate transaction arrivals in the German continuous intraday market. Assuming
different distributions of inter-arrival times from 3 hours to 30 minutes before the delivery such
as exponential, gamma, generalized gamma, and generalized F-distributions maximum likelihood
estimation of the distributions was carried out by using some of the time-dependent coefficients.
Using the estimation, new trajectories were simulated and their performance was compared with
the benchmark models. The results showed that in the central part of the distribution of the
transaction arrivals exponential and gamma distributions with exponential rate function performed
better forecasting, while best forecasts were obtained from the Generalized Gamma model with
quadratic rate function and exponential shape function. Future research can incorporate more complex
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Figure 6. Schematic depiction of a typical intraday continuous order book for a specific
delivery hour. The best bid is the order that is willing to buy at the highest price, while the
best ask is that ready to sell at the lowest price. Please note that there can be multiple orders
at the same price level, as shown in the best bid order [38].

probability distribution parameter functions for inter-arrival times.
Narajewski [39] utilized a simple intensity estimation and forecasting method to predict the hourly

transaction arrival during the last 4 hours of trading for the German intraday electricity market. The
intensity function was a maximum likelihood function. Four trajectories of simulation for four different
delivery times were compared with the actual observation of transactions arrival, and the evidence from
this study suggested that these arrivals follow the exponential distribution function. The study revealed
that forecasting performance was superior for products having a high transaction count. Other intensity
functions, as well as distribution, can serve as a base for future studies.

Coskun and Korn [40] utilized a Jacobi process to model the electricity demand in the German
intraday market. A study was performed to compare the performance of the Jacobi process to model
the demand with the Ornstein-Uhlenbeck process and the Cox-Ingersoll-Ross process. Simulation
results for all three models have shown that the Jacobi process model outperformed the Ornstein-
Uhlenbeck and Cox-Ingersoll-Ross models as the stationary distribution of the Jacobi process models
the following beta distribution. Jacobi-I and Jacobi-II models were evaluated with a different upper
bound and lower bounds; thus, the bounding setting for demand has become an attractive feature for
the model, but it led to challenges in the forecasting and estimating of the parameters of the Jacobi
process. Further studies may include price-sensitive customers as a parameter for supply-demand
variation forecasting, and also for forecasting energy production and prices.

Various point process models have been explored to quantify the influence of self-excited jumps and
the exogenous factors on the intensity of order arrival during the last 3 hours in a continuous intraday
market [42]. An exogenous model was formed which considered only external factor processes such
as the generation of solar and wind power, and the activated volumes in the balancing market; on the
other hand, a pure self-exciting model was formed by considering the fundamental factors only, and
a combination of both models resulted in the formation of a full model. The performance of the full
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model was evaluated with each of the individual models, and it was concluded that the exogenous
model was not sufficient to capture the dynamics in the intraday markets; hence, the inclusion of the
self-exciting factors is necessary.

Ordinary least squares (OLS) regression, quantile regression, and the autoregressive moving average
were employed to model the supply-demand imbalance and the market prices in the intraday market
using quarter-hourly data [20]. The study has demonstrated that wind and solar energy forecast error
increases the supply and demand imbalance, and that large imbalances affect the prices. Furthermore,
the prices were more affected by wind forecast errors than by photovoltaic forecast ones. The
regulatory intervention to provide timely wind and solar forecasts can improve the accuracy of the
forecast.

2.2.3. Price volatility

Pape et al. [5] proposed a model to estimate the hourly electricity price based on aggregated supply
and demand information for day-ahead and intraday markets. The forecasting models utilized data
from the German electricity market, such as the load, demand, spot prices, coal prices, carbon dioxide
(CO2), gas prices, wind, and solar feed-in, cross-border flow, etc. A detailed discussion of fundamental
and regression models was held. The results suggest that the model performs better when market
peculiarities are considered. The intraday price forecast can be improved with the inclusion of day-
ahead price information. In addition, the authors found that the start-up cost of power plants leads to
the increase of day-ahead and intraday prices. The market state also affects the prices, as an increase in
supply will result in a price drop, and a lack of supply will lead to a substantial price increase. Finally,
other promising areas of research would be finding advanced approaches to deal with inefficiencies and
improve the modeling of intraday market prices.

A Nash equilibrium model was developed for a finite number of agents as well as in the asymptotic
framework of mean-field games to predict market prices and identify the effects of the optimal activity
of market participants on prices concerning demand and generation forecasts [36]. To determine
the price, the authors utilized the LOB data sourced from the German intraday market EPEX. The
empirical results revealed that the volatility in price increases near delivery time, and that market price
exhibits a negative correlation with renewable forecasts. Moreover, the model showed that the price
volatility decreases with market depth and increases for low trade cost, and that huge competition limits
the profit.

Maciejowska et al. [31] experimented with an ARX and probit model to forecast the price
spread between day-ahead and intraday prices to maximize the economic benefits for German and
Polish markets. For the Polish market, the endogenous parameters were the day-ahead prices and
the balancing prices, while the exogenous ones were the forecasted demand, the forecasted wind
generation, and the forecasted reserves. Day-ahead prices and intraday prices were considered as
endogenous for the German market and load forecast, and the forecast of wind generation was
exogenous. The linear ARX model was useful to link the past endogenous and exogenous variables
with current values. On the other hand, the probit model effectively describes the probability
distribution of the binary variable. Numerous model specifications were employed to analyze the
accuracy, such as the data aggregation level, calibration window length, lag structure, etc., and it
has been found that more information does not increase accuracy and profits. Weekly seasonality
consideration was reasonable, and a short calibration window was beneficial to capture the non-linear
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behavior of variables. The results showed that day-ahead and intraday/balancing prices depend mostly
on the fundamental variables.

Gürtler and Paulsen [8] presented a regression model for day-ahead and intraday price forecasting
under the influence of the wind and solar generation forecasts by using the day-ahead and intraday data.
The model was designed to simulate a variable that relates electricity generation technology with price
determination and to capture the non-linear behavior of price change following demand; also, different
fuel types like gas, coal, etc. were also considered. The study indicated that even though the demand
for renewables increased in the electricity market, their price-dampening effect had been reduced due
to the drop in fuel prices, while the reduction in the forecasting errors in the wind and solar forecast
resulted in minimized price volatility.

Martin [43] developed a simple historical market simulator model based on the LOB data of the
German intraday electricity market to reconstruct the complete state of the market at any time. The
model was able to capture the effect of trade size and trade time on intraday prices. A stochastic market
model was then created from order flow data. The simulation study was performed on data collected
over a month for the last two hours of trading and it has been found that the market was able to represent
the behavior of markets such as the order arrival rate, the order prices, the mid-price, the price at the
best ask and the price of the best bid. Still, further modifications are required to make it useful for a
short time intraday market.

Karanfil and Li [45] applied a methodology consisting of a VAR framework and generalized impulse
response simulations to test the causality of the intraday market fundamentals on the difference between
the intraday prices and the day-ahead values in the Nordic intraday electricity market. Deviations
between wind generation, conventional generation, total demand levels, and cross-border electricity
trades were the market fundamentals considered to study the relationships. The result of the study
revealed that wind and conventional generation forecast errors were the most important factors creating
deviation in intraday and day-ahead prices, and that a decrease in the level of wind forecast errors
resulted in a decrease in the price deviations. Moreover, it was found that the difference caused due to
the impact of wind deviation on the intraday market does not fade away quickly, as it occurs through the
generator’s continuous adjustments using real wind generation for the next hours. The wind forecast
errors adversely impacted cross-border exchange, leading to a damping out of these errors due to the
causal relationship between price differences and cross-border trading associated with wind forecast
errors. Additionally, the wind forecast errors showed a negative influence on conventional forecast
errors and a positive impact on load forecast errors.

A regression analysis was applied to the time series data derived from the difference between day-
ahead and intraday prices within the German intraday market. This analysis aimed to illuminate
the mechanisms of price formation and the influential factors impacting prices [26]. The day-ahead
prices, intraday prices, trading volumes, and errors of wind and solar energy production forecasts
were utilized as the dependent variables for forecasting whereas, power plant outages, load forecast
errors, foreign demand and supply, the merit-order curve, market behavior, and ramping costs were
used as independent parameters. This research has indicated that errors in solar and wind forecasting
as well as outages highly affect intraday prices. The merit-order curve, ramping costs, and market
behavior have not shown any remarkable influence on the prices. Additional studies to understand
price formation might include an analysis of unobserved determinants. Table 3 provides an overview
of the statistical/econometric forecasting methods.
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Table 3. Overview of statistical/econometric forecasting methods.
Art. Forecast method

Forecast
variable Input variables sources Period Country Market Error measure Pros Cons

[29] ARIMAX Price

Continuous intraday prices
15-minute auction prices,
Total load,
Onshore wind feed-in

22-03-2017 -
21-03-2018 Germany EPEX SPOT

RMSE: 7.5
(approx)

The framework provides
the opportunity for
parameter tuning.
Seasonal and periodic
behavior can be
characterized by model.

Unable to handle the
nonlinear behavior.
Requires stationary
input time-series.
Selecting appropriate
window can be difficult.

[30]

Auction-curves
based

econometric
model

Price

Day-ahead Prices,
Intraday prices,
actual and forecasted
solar and wind forecast

01-01-2016 -
31-12-2017

Germany,
Austria EPEX SPOT

MAE:4.185
(mcq model)
RMSE: 6.984
(mnq model)

Ability to handle the
nonlinear effects of
renewable forecasts
errors and prices,
and volatility.

Renewable forecast
showed a nonlinear
effect on intraday
prices.

[32]
Standard

econometric
model

Price

Transaction price,
Trading volume,
Auction price,
Wind and solar power
forecast,
Expected demand,
Expected conventional
capacity

01-01-2015 -
31-12-2015 Germany EPEX SPOT Adj. R2:

11% to 22%

The model provides a
strategy to bidding behavior
optimization in intraday
market. It helps to design
forecasting models for
single intraday transaction
prices in continuous
trading.

A large amount of data
is required.

[33]
Second-order
HJB equation Price

Wind energy,
Conventional units –
prices, payoff, profit,
value function

01-04-2016-
30-06-2016

Germany,
Austria EPEX SPOT

Simple model that
requires the solution of
HJB equation with
market data as its
parameters.

Does not provide
closed loop formula
for optimal trading.

[34] VAR model Price

Intraday price premium
Fundamental variables:
Wind power forecast error,
non-wind power forecast
error, load forecast error,
cross-border electricity flow,
transmission congestion,
forced outages

01-01-2015–
31-12- 2018 Sweden Nord Pool

The model is systematic
and flexible to capture
real-world behavior and
dynamics in time series
data.

It requires that the
time series are stationary
or transformed into their
stationary values.

[35] MDP Price

Stochastic electricity
prices,
Uncertain wind
energy production

Spain MIBEL

Modeling of complex bidding
functions and improved
wind production
forecasts increased value
of intraday trading.

As the action space of
the stochastic program
was unable to handle
losses from wrong wind
energy forecasts, it
resulted in lower gains
in certain weeks.

[50] PCA Price

Day-ahead prices,
Intraday prices,
Day-ahead consumption
prognosis,
Wind and solar generation
forecasts, Offshore and
onshore wind generation
forecasts

01-01-2015 -
15-08-2019 Germany EPEX SPOT MAE: 4.858

The method helped
market participants to
optimize the buying and
selling strategy. Forecast
averaging with PCA helps
in the automatic aggregation
of information. Different
lengths of calibration
windows can be selected
for better performance.

Need a robust way to
select calibration
window length.
Interval or probabilistic
forecasting is not
considered.

[49]
LASSO

estimated
models

Price
Intraday prices,
Cross-border trades,
Day-ahead prices

01-01-2015 -
30-04-2018 Germany EPEX SPOT

MAE: 4.4135
RMSE: 7.0721

The model can use
different potential
regressors and tuning
parameters for better
forecasting.

Selecting effective
explanatory variables and
parameters can be a
cumbersome task.

Continued on next page
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Art. Forecast method
Forecast
variable Input variables sources Period Country Market Error measure Pros Cons

[61]
LASSO estimated
Linear regression

model
Price

Day-ahead prices
Intraday prices
Wind and solar
data

01-01-2011-
31-12-2015 Germany EPEX

Ability to easily
quantify the impact of
wind and solar forecasting
on intraday prices.
Asymmetric dependency
structures can be
captured by considering
the threshold
specification.

Requires effective
selection of hundreds
of non-zero parameters
from lot of data.

[63]
LASSO regularized

linear regression
model

Price

Endogenous: Intraday
prices
Exogenous: Day-ahead
prices, System-wide load
and its day-ahead forecast
Wind power generation
and its day-ahead forecast
PV generation and its
day-ahead forecast

01-01-2015-
30-04-2018 Germany EPEX SPOT

MAE: 3.716
RMSE: 5.894

The method is useful for
traders, as forecast gets
available before 1 hour
of opening VWAP transaction
window. Even with less
predictor the accuracy of
model is good. Using
expert knowledge,
non-informative parameters
can be neglected.

Choice of a regularization
parameter demands more
computational power.
Only one transformation
is used for stabilization,
can try others. Only
regression models are
used, ML techniques not
used. Only point
forecasting performed.

[62] GAMLSS Price
Intraday prices,
Transactions

16-07-2015-
01-10-2019 Germany EPEX SPOT

MAE: 3.073
RMSE: 5.804

The models generate
realistic ensembles that
allow efficient decision-
making for trading and
redispatch. Effective
fitting of different
distributions to the data.

Empirical coverage of
prediction intervals
is not fully perfect.

[57]
LQC, AQL

Point Forecasts
based Approaches

Price Intraday prices 15-06-2017 -
29-09-2019 Germany EPEX -

LASSO method was able
to identify most important
variables for intraday price
prediction

High computation power is
required.
Complex approaches.

[41]
LOB

Model
Price,

Volume

Aggregated market data,
Transaction data,
Order book data
(Instrument type,
Delivery instrument,
End validity date,
Delivery date,
Cancelling date,
Start validity date,
Execution price, Status,
Executed volume,
Side, Price Volume)

01-04-2015 -
31-12-2016 Germany EPEX SPOT

Volume-
mean error:

11.58 %
Median error:

6.6 %
Price-

mean error:
13.52 %

Median error:
1.38%

The model allows
participants to model
trading risk and also
tests their trading
strategy. The illiquidity
can also be modeled
through relation between
price and volume.

It is just a simulator,
and it is not tested
for forecasting.

[44]
Hawkes
process

Price,
Volume Intraday prices

2015-03-31
13:00-21:15 Europe EPEX SPOT

Hawkes-process based
model can recover sources
of variation which are
time-inhomogeneity of
baseline and self
excitement phenomenon.

None

[38]
GAM

Models Volume

The initial price of
electricity, Total position
to trade, Daily volatility,
Annual growth

01-01-2019 -
27-11-2019 Germany EPEX Spot

Minimizes the expected
costs, expected variance
and outputs an optimal
trading path per minute.

Optimization problem
arises if applied in
late trading and for
large volume trades.

[39]
Rolling
Window

Forecasting
Volume

Date of the delivery,
Product type,
Time of the transaction
Traded energy volume,
Price in EUR/MWh,
Transaction ID

01-10-2017 -
30-09-2018 Germany EPEX SPOT

RMSE:105.4
MAE: 138.8

The approach is not much
complicated and methods
are easy to implement.
Can be used for any
other market.

Complex probability
distributions are needed
for modeling. No literature
benchmark models used
for study.

Continued on next page
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Art. Forecast method
Forecast
variable Input variables sources Period Country Market Error measure Pros Cons

[39]

Maximum
Likelihood
Function
Intensity
Function

Volume Transaction arrivals
01-01-2017 -
04-01-2017 Germany EPEX SPOT

A simple intensity
estimation method.
Can be easily
implemented in software.

Forecasting is not
homogenous for products
with low and high
transactioncount.

[40]
Jacobi

Process
Model

Volume
Intraday electricity
Consumption

01-01-2015 -
31-12-2018 Germany EPEX SPOT

The Jacobi model allows
setting local bounds on
demand in order to
improve performance.

Locally setting the
bound on demand makes
it difficult to forecast
and estimate the Jacobi
parameters difficult.

[42]
Point

Process
Models

Volume

Wind and solar
production,
Total imbalance volume
Forecast error,
Intraday trading data

01-04-2015 -
31-12-2015 Germany EPEX SPOT

Processes with exogenous
factors and self-exciting
term capture market
dynamics efficiently.

No single process is
dominant, but it is
combination of fundamental
and market factor leads
to model fit.

[20]
OLS Regression,

Quantile Regression,
ARMA

Price,
Volume

Imbalance, Spot price,
1-Day Lagged Price,
1-Day Lagged Imbalance,
Adaptive Price,
Realized Total Load,
PV Forecast Error,
Wind Forecast Error,
Seasonality and Peak
Variable

01-01-2014-
31-12-2014 Germany EPEX SPOT

Price-
R2: 0.333121

Volume-
R2: 0.560604

Simple linear models that
considers set of common
variables to forecast
imbalance and price.

ARMA method is inadequate
to explain the relationship
between imbalance and its
effects.

[5]
Multiple

Regression
Models

Price
Volatility

Load, Demand, Spot prices,
Coal Price, CO2, Gas price,
Wind and Solar feed-in,
Cross Boarder Flow,
Power plant information,
Electricity production
from CHP Spot

2012-2013 Germany EPEX SPOT
R2: 0.9082

Adj. R2: 0.9082

Ability to account for
nonlinearities inthe supply
stack. Ability to
consistently combine the
time- varying information.
Helps in modelling spot
price variance.

It may fail to capture
the full dynamics of
trading decisions in
the continuous
intraday market.
It struggles to
reproduce the negative
prices.

[36]
Nash

Equilibrium
Model

Price
Volatility

Mid-quote prices,
Renewables production
forecast

01-01-2015-
01-01-2017 Germany EPEX SPOT

It reproduces the
stylized features of
market price. It provides
direct link between
market characteristics,
price features and gain
of individual agents.

In partial information
setting, finding the
solution of Nash
equilibrium is very
complex. It leads to
systems of coupled
partial differential
equations, which are
difficult to solve.

[31]
ARX and

Probit Model
Price

Volatility

Poland: Day-ahead prices
Balancing prices
Forecasted demand
Forecasted wind generation
Forecasted reserves
Germany: Day-ahead prices,
Balancing prices,
Forecasted load,
Forecasted wind generation

01-01-2016 -
31-12-2017

Poland,
Germany

TGE,
EPEX SPOT

Accuracy:
57.3%(ARX)
55.3%(Probit)

Price spread is predicted
successfully with models.
It captures the functional
relationship between past
prices and exogenous
variables. The models can
select data aggregation
level, lag structure, length
of calibration window
and exogenous variables
for better performance.

More information does
not increase accuracy
and profits. Models
have less accuracy.
The two main concerns
of generator i.e.
profit and risk may
not get reflected.

[8]
Regression

Models
Price

Volatility

Day-ahead, Intraday Prices,
Coal prices, Gas,
CO2 emission, Actual load
Wind & PV forecast
and actual data

01-04-2010-
31-08-2016 Germany EPEX SPOT R2:0.7815

Models the non-linear
intraday behavior of the
prices for varying demand.

Price reductions due
to increased wind power
generation do not reveal
different magnitudes.

Continued on next page
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Art. Forecast method
Forecast
variable Input variables sources Period Country Market Error measure Pros Cons

[43]

Historical
Market

Simulator
Model

Price
Volatility Transaction data

2015-03-31
13:00-21:15 Germany EPEX SPOT

The historic model has
ability to model the volume
sensitivity of prices and
the pay-as-bid principle.
The stochastic model has
better ability of
representing the market
illiquidity, and it reveals
the relation between
trading activity and its
horizon as well as prices
and volumes.

The historic model requires
the full set of historic
order book data for the
period of simulation.
The stochastic model lacks
the ability to effectively
submit the right order at
the right time because
The model is based on
unconditional distributions.

[45]

A VAR
Framework

and GIR
Simulations

Model

Price
Volatility

Day-ahead,
Intraday prices,
Wind forecast errors

01-01-2012-
31-05-2014 Denmark Nord Pool

VAR model can provide
the information about the
causal relationships among
the series. GIR provides
an effective way to
evaluate the relation
between different forecast
errors and electricity price
deviations.

VAR cannot indicate how
each variable responds to
changes in other variables,
and how long the effect
lasts. GIR analysis is
not sensitive to the
ordering of variables
in the VAR system.

[26]
Regression

Models
Price

Volatility

Day-ahead prices,
Intraday prices,
Transaction lists,
Trading volumes,
Unplanned outages of
power plants,
Wind and solar day-ahead
forecasts and actual
in-feed TSO

01-01-2010 -
31-12-2011 Germany

EPEX SPOT,
EEX

Base:
R2: 0.1861

Adj. R2: 0.1854
Peak:

R2: 0.2108
Adj. R2: 0.2095

It provides
theoretical approach
to the analysis
of liquidity.

Fundamental liquidity
model does not
explain liquidity
exhaustively.
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2.3. Machine learning models

Machine learning techniques allow systems to be trained rather than explicitly programmed; they
learn to recognize statistical structures in the examples they are shown. Such techniques have become
very popular in recent years due to the increase in computational power and big data, as they excel on
complex problems with comprehensive datasets on which many traditional statistical methods would
become impractical [46]. Several authors have reported their excellent performance over traditional
prediction tools because of their accuracy and ability to handle nonlinear, non-stationary, and complex
data structures. In literature, numerous machine learning models such as artificial neural networks
(ANNs), support vector machines (SVMs), and recurrent neural networks (RNNs) were unquestionably
preferred over conventional techniques to forecast intraday electricity. However, the forecasting
accuracy of such models mainly depends on the parameter selection and data used to fit the model [65].
In the following sections, the machine learning methods are discussed according to the forecasting
parameters, starting with prices, and followed by volume and volatility.

2.3.1. Prices

Kolberg and Waage [46] developed numerous types of neural networks-based models to predict
hourly prices in continuous electricity intraday markets by using data from the Nord Pool’s intraday
market Elbas and weather forecast data. A virtual wheeling platform (VWP) of trades for a given
hour of electricity delivery was used as the output of the prediction over the six hours remaining
until delivery. Pre-processing of market data and weather forecast data was performed to map the
price to each set of forecasts. At first, a deep multi-layer perceptron was designed; it uses a sliding
window of input data to capture the temporal dimension; later, through experimentation two more
architectures ResNet1 and ResNet2 were designed with some modifications to the original. In addition
to that, two long short-term memory (LSTM) recurrent networks were designed, i.e., normal LSTM
and bidirectional LSTM. All of these models used only the market data for prediction. Finally, with
the inclusion of market and weather data, a multi-input network known as multi-LSTM ResNet was
developed. The performance of these models was compared with that of different heuristic models
along with statistical and simpler machine learning models such as gradient boosting, multivariate
adaptive regression spline feature selection, LASSO, ridge regression, principal component regression
models; the proposed model outperformed the heuristic and benchmark models.

A comparison study of the neural network-based models for weighted-average intraday price
prediction was performed for the Turkish intraday market [47]. Exogenous variables such as the day-
ahead price, balancing market price, renewables forecast and demand/supply, and trade value were
employed as independent variables. The RNN shown in Figure 7 has outperformed the LASSO and
linear regression models. The numerical results illustrated that gated recurrent units (GRUs) performed
better than the classical models. Even though day-ahead prices were used as an independent variable
for forecasting, the spread between forecasted intraday and day-ahead prices was lower and can hence
be considered as one of the important variables. Important feature selection can be a topic of discussion
for future work as most studies of the paper were focused on forecasting only.

An LSTM neural network-based model consisting of two layers was designed to forecast the two-
hour intraday prices by using a multi-step prediction approach [51]. LSTM cells have input, output,
and forget gates, which allow the model to maintain information over time and regulate the flow of
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Figure 7. RNN for electricity price prediction [47].

information. This approach involves building separate models for each prediction step, using only
past observations. The model incorporated 16 variables, including average prices and lagged average
prices, and it considered month and hour data to address seasonality effects. Additional variables like
production, consumption, and imbalance cost were added to enhance performance. Error metrics were
used to assess the model’s accuracy, and the lowest error was achieved when considering all variables.
The model also performed better for certain variables. Future work might involve the inclusion of
exogenous variables with the application of direct multi-step-ahead prediction.

Klein et al. [7] proposed two deep time series models based on the RNN variant called an echo
state network (ESN) to enable probabilistic point forecasting of the price. In the first model, the
ESN was modified with the introduction of random disturbances and shrinkage before additional
regularization. The second method used a Gaussian probabilistic ESN with the application of the
deep distributional regression method. Bayesian Markov chain Monte Carlo methods were used to
estimate both models and compute forecasts. These models have captured all three features, including
nonlinear serial dependence, extreme levels of asymmetry, and strong time variation in the distribution,
which are essential for the accurate modeling and forecasting of complex time series. The results of
the study showed that the models were accurate when applied to the Australian National Electricity
Market, and they also showed that including demand forecasts in the model improves the accuracy of
the forecasting. Future work might involve using various methods to estimate time series speeding up
computations as well as using deep time-series models for economic and financial applications.

Kath and Ziel [54] proposed a multivariate elastic net regression model to forecast the quarter-hourly
electricity prices for the German intraday market. The authors have studied the impact of day-ahead
EXAA prices on the intraday continuous and intraday call-auction prices. The results of the elastic
net based forecast model were compared with those of classical linear regression models; the model
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showed considerable accuracy and outperformed benchmark models. The addition of EXAA prices as
an explanatory variable resulted in a further increase in the accuracy, but it mattered only to a small
extent. On the other hand, the authors have also discussed making trading profitable decisions based
on the forecasting model. Further research includes the study of the effect of adding more vendor data
on forecasting accuracy, the use of non-linear prediction models like random forests, and the study of
directional forecasting approaches.

Narajewski and Ziel [55] developed a model using the LASSO and elastic net techniques to forecast
the VWAPs of hourly and quarter-hourly products in the German continuous intraday electricity
market. The performance of the models was compared with that of seven different benchmark
models. The results from hourly products indicated that transaction data were not useful in providing
enough market information even after considering the recent prices; thus, most of the models did
not perform better than naı̈ve models. On the other hand, the quarter-hourly products did not give
satisfactory results for the most recent value due to the lower number of transactions compared to
hourly products. The elastic net with the standard penalty and correctly back-transformed performed
best for the information model using variables such as intraday auction price, the most recent value of
the corresponding product, and the closest hourly product. The authors further stated that the correct
backward transformation makes the forecast performance better. Future studies can involve using
different estimation methods, including more fundamental variables, or employing the probabilistic
forecasting technique.

Mohammadi and Hesamzadeh [56] built different econometric frameworks which include LSTM,
deep convolutional generative adversarial network (DCGAN) and No-U-Turn Sampler (NUTS)
algorithms to model the intraday prices using inadequate historical data. Day-ahead and intraday
market data were used to study the effects of time, area, bidding zone, and volume on the behavior
of these markets. At first, an LSTM-based algorithm was applied to the intraday prices to capture
the temporal trends; this resulted in the formation of time series similar to the actual data. Later, a
DCGAN-based approach was employed to model intraday prices which were considered as unknown
functions without using probabilistic features; it generated prices that are more adaptive to market
changes. Finally by considering intraday prices as random numbers, and fitting the probability
distribution function (PDF) to the actual data, a NUTS-based algorithm was applied to generate the
prices with a similar PDF. The results of this study have shown that DCGAN-based and NUTS-based
models were more accurate than the LSTM. LSTM , as applied with enough data was the best choice
for the short-term studies of power systems, whereas the DCGAN-based model was best for the long-
term studies and the NUTS model was the best choice in the case of limited availability of data. Further
research can include building a combination of all of these methods for better forecasting.

Lehna et al. [58] formulated the intraday prices as an MDP to apply deep reinforcement learning
(DRL) in the form of a proximal policy optimization algorithm for automatic trading in German
intraday markets. A simulation framework was employed that enabled the trading of the continuous
intraday price in one-minute steps; it was tested from the perspective of a wind farm operator. In order
to reduce the complexity and capture the essential information of the LOB, a restrictive environment
for DRL agents was constructed, so that adequate simulation of the trades could be realized. The
framework used two external factors; the first one was the wind forecast, which was used to indicate
expected production capacity in the intraday market and price forecasts to learn about price change
and trading trends. Even with high variance in prices, the framework captured the relevant patterns
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effectively and formed a good trading strategy; thus, the results showed better performance of DRL
agents over multiple baseline models with 45.24% improvement. As the evaluation was carried out
on the data over one time period of one week, the framework might not be able to specify long-
term influence; hence large datasets should be considered. In the future, a more complex rule-based
approach can be developed to compete with the framework by considering more explanatory variables.

2.3.2. Volume

Janke and Steinke [68] developed various linear regression and neural network models to predict
the quantiles of the price distribution for the last 3 hours before delivery, using trading and fundamental
data like the load forecast, the forecasts of wind and solar power, etc. A multi-output neural network
model is visualized in Figure 8; this model uses an architecture that accounts for the structure of
the inputs and limits the number of parameters in the hidden layers. The study found that the
exogenous variables did not improve the accuracy of the forecast, unlike the time-series information
from neighboring products and quantiles. The comparison of the proposed models with the naı̈ve
and statistical models showed that the proposed models are superior, and that the LASSO regularized
linear regression model is the best performer. Future work should focus on the results of quarter-hour
predictions and any effect this has on the accuracy of the hour predictions and the forecasting of prices
and volumes for short-term trading and risk management.

Figure 8. Visualization of the neural network model. The first layer is a locally connected
layer that operates only on the time series data and learns a distinct set of weights per
quantile. The layer’s output is concatenated with the vector of exogenous variables x and
passed through a fully connected layer [68].

Pozzetti and Cartlidge [60] experimented to forecast the electricity transmission system demand in
the British intraday continuous electricity market. A feed-forward ANN (FANN) was trained to predict
one-hour electricity demand and this demand prediction was an input to the second FANN to predict
the net imbalance volume in the electricity market. The model showed high precision accuracy during
the live testing, where net imbalance volume prediction was used to decide on the buying and selling of
30-minute electricity contracts. Finally, another promising line of research would be the optimization

AIMS Energy Volume 11, Issue 5, 918–959.



946

of the model through the use of different periods, time horizons and deep learning methods, as well
as exploring more sophisticated algorithmic trading strategies, including risk hedging and portfolio
optimization.

2.3.3. Price volatility

Cramer et al. [37] employed multivariate probabilistic forecasting approaches to predict the intraday
electricity prices for the German EPEX spot market. As the intraday market is used to adjust the
day-ahead deviations, it represents the characteristics of the intraday prices. Here, the prediction
was performed by considering the day-ahead prices as fixed, and forecasting the difference between
the day-ahead and the intraday prices. In this study, the 15-minute intervals per hour of the day-
ahead price interval were considered as a four-dimensional joint distribution to capture the hourly
fluctuation patterns. A deep generative model known as a normalizing flow model was used to study
the multivariate price difference distribution which integrates the multivariate density estimation and
probabilistic regression. Comparison of the model with the historical data and two other models
namely, Gaussian copula and multivariate Gaussian regression has proved that the normalizing flow
model works better as a tool to yield an accurate forecast with narrow prediction intervals. Moreover,
the impact of external factors was studied to determine whether their effects were negligible on the
model performance; however, the prior realizations of the price difference and all of the input factors
could lead to improved performance. In the future, more meaningful impact factors can be employed to
increase the accuracy of the model. Table 4 provides an overview of the machine learning forecasting
methods.
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Table 4. Overview of machine learning forecasting methods.
Art. Forecast method

Forecast
variable Input variables sources Period Country Market Error measure Pros Cons

[46]

Neural
networks-

based models
: MLP, LSTM

RNN

Price

Quantity of trades, VWP
and volume, transmission
capacity, Consumption, and
production prognosis
Price and buy/sell volume
data, production,
consumption, Transmission
capacity, or Temperatures,
Total precipitation, Two
wind vector components,
Surface net solar radiation

02-11-2011-
31-12-2017 Norway Nord Pool

LASSO-
MAE: 3.0845

RMSE: 3.0845
LSTM-

MAE: 2.7131
RMSE: 4.2377

They possess the abilities
to refine the architecture,
Fine-tune the hyper-
parameters and network
topologies for better
forecasting. The networks
can become better by
employing more data.

Implementation of complex
data-driven deep learning
techniques can be a
cumbersome task. Lot of
data processing needs to
be carried out due to
involvement of numerous
variables. They demand
substantial computational
power.

[47]
Multiple neural
network models Price

Day-ahead price
Balancing market price
Forecast renewables/
Total generation
Forecast demand/supply
Trade Value
(day-ahead market)

01-01-2017 -
28-02- 2019 Turkey EPIAS

ANN-
MAE: 1.668

RMSE: 2.170
LSTM-

MAE: 1.325
RMSE: 2.170

GRU-
MAE: 0.978

RMSE: 1.302

Models perform better at
predicting spread between
intraday and day-ahead
prices. The models require
mainly the day-ahead prices
for forecasting.

Most recent intraday
prices are not considered
for forecasting.

[51] LSTM Price

Average price, total final
daily production program,
total real-time generation,
load forecast,
consumption,
imbalance cost

08-02-2017 -
31-03-2018 Turkey EPIAS

MAE: 17.2
MAPE: 0.22
RMSE: 25.06

R2: -0.12

Multistep-ahead timeseries
prediction useful in
variability, frequency of
abnormally high or low
values. The model performed
better with lagged values
of prices, electricity
consumption and electricity
production values.

Building a new model for
each prediction step can
be a tedious job.

[7]

ESN,
Gaussian

probabilistic
ESN

Price
Intraday prices,
Demand forecast

01-01-2014 -
31-12-2019 Australia NEM

RNNST-
MAE: 0.0165

RMSE: 0.0385
CRPS: 0.0131

Can be applied to high
frequency time series.
The model can
recast deep neural
networks as statistical
models for correct
uncertainty quantification.
ESN helps in minimizing
the weights in training,
thus reduced computation.

The model is
complex for training
the large data.

[54]
Multivariate
elastic net

regression model
Price

Day-ahead auction price,
intraday auction price,
intraday VWAP– EPEX,
day-ahead auction price,
load forecast, PV
forecast, wind forecast

08-10-2015-
31-05-2018 Germany EPEX

MAE: 7.53
RMSE: 11.6

The model itself outlaws
the features that do not
add any insight.

Complex structure.
Time-consuming
computations. Feeding all
inputs and features leads
to increase in error.

[55]
LASSO and
elastic net
techniques

Price

VWAP-Price of
hourly products,
VWAP-Price of quarter-hourly
products, Day-Ahead Price
and Intraday Auction Price

01-01-2015-
29-09-2018 Germany EPEX

MAE: 3.3325
RMSE: 5.2739

Using LASSO’s shrinkage
property, model with many
parameters can be handled
easily. Backward
transformation exhibits
lower error and signifi-
cantly better forecast.

LASSO technique requires
the standardized regressors.
The models become complex
with a large number of
regressors. A proper tuning
exercise of the parameter
is essential.

Continued on next page
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Art. Forecast method
Forecast
variable Input variables sources Period Country Market Error measure Pros Cons

[56]

LSTM,
DCGAN,

NUTS
algorithms

Price
Nordic intraday prices
day-ahead prices.

01-01-2015-
31-12-2021 Sweden Nord Pool

MAE: 3.3325
RMSE: 5.2739

LSTM-based algorithm
captures temporal dynamics.
The DCGAN-based approach
is useful in generating prices
without using probabilistic
features. NUTS-based fits
the PDFs to actual data
and generate prices with
same PDFs.

LSTM requires a lot of data and
large number of iterations to
minimize error. DCGAN-based
the approach does not perform
well in generating negative prices.

[58]
DRL

algorithms Price
Intraday transactions,
intraday prices forecasts,
wind forecasts

01-05-2018-
30-09-2018 Germany EPEX SPOT

Accuracy
40.24%

It captures the high price
variance and form a better
trading strategy. A model can
solve complex problems by
learning the correct behavior.
PPO increases the learning
speed, learning stability.

Requires rigorous training.
Multiple restrictions are
necessary to model an adequate
simulation of the trades.
The agent was not able to
detect the price increase.

[60] FANN Volume

Month, day of week,
settlement period,
final physical, notification,
day-ahead demand forecast,
net imbalance volume,
generator trips,
wind forecast

01-01-2019-
29-02-2020

Great
Britain -

Success rate:
72%

Very useful in real time
or live forecasting.
The net imbalance forecast
provides better strategy
for trading.

As the model only
considered historical
data, an increase of
Renewables generation can
lead to errors in forecasts.

[37]
Normalizing
flow model

Price
Volatility

Day-ahead,
VWAP price,
renewable electricity
production, forecasts
and actual production
values

01-01-2018-
31-12-2019 Germany EPEX SPOT

Can model the high
dimensional complex
distributions. Multivariate
approach captures the
correlation better than
the classical univariate
approach. Identifies rare
price peaks.

Probabilistic forecasts
cannot be evaluated by
residual metrics.
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2.4. Ensemble and hybrid methods

To date, researchers have developed ensemble and hybrid methods to increase the accuracy level of
the forecasts and create more comprehensive and effective models. Considering the ensemble methods,
these methods work to enhance the strengths and accuracy of the individual methods. There are three
different ways to integrate the methods, i.e., linear, nonlinear and a combination of both. Statistical
and machine learning methods entail the use of ensemble models to obtain aggregated decisions by
using multiple predictors. Moreover, competitive and cooperative ensemble forecasting are the two
categories of ensemble methods. In competitive ensemble methods, a forecasting task is divided into
different sub-tasks and solved individually to enhance the performance of the model. The prediction
values get added to obtain the final forecasting results. The competitive ensemble forecasting models
use multiple predictors with different parameters to build individual forecast models and form an
ensemble forecast model. The results of the forecasting simulation from the selected models are
generally aggregated by averaging [69]. Hybrid methods, on the other hand, combine different types of
models or techniques to create a single unified model. This could involve combining statistical models
with machine learning algorithms or using different types of data preprocessing and feature selection
techniques. Hybrid methods aim to leverage the advantages of different approaches to create a more
robust and accurate model.

2.4.1. Prices

A method of statistical point and probabilistic forecasting was proposed for day-ahead and intraday
forecasts for the Iberian electricity market [48]. Gradient boosting trees and linear quantile regression
models were utilized for forecasting along with a careful selection of the multiple explanatory variables
like future contract trading and a forecast of the daily average spot price. The prices from the previous
sessions were useful to get high-quality probabilistic forecasts for the intraday market. Figure 9
depicts an example of day-ahead and intraday hourly prices, and it can be noticed that day-ahead
prices strongly influence the intraday sessions. Moreover, each intraday session is highly correlated
with the previous one. Future work should include forecasting operating reserve prices, and mid-term
probabilistic prices and employing models such as autoregressive logit models or deep learning to
extract important features.

Kath [52] proposed a regression-based model to understand the effect of the XBID variable on
the price, volatility and volume of the German intraday market. Fundamental variables included in
the study were day-ahead prices from EPEX and foreign markets, EPEX intraday prices, flow, load,
wind, and photovoltaics production forecast and the future prices of coal, and gas. Linear regression
analysis was used in the paper to answer the research question of how coupling affects electricity prices.
The random forest approach was employed to compute variable importance. This metric measures
the change in prediction error when a single input variable is altered randomly while keeping all
other factors constant. The variance-stabilizing transformation and the Newey-West estimator, which
assumes heteroskedasticit, were applied to model the electricity time series. Initially, three hypotheses
were made on the effects of the XBID on the intraday market. The study showed that the XBID does
not impact intraday prices. Moreover, it has an impact on cross-border trades that is dependent on the
regulator’s wish to increase the market liquidity. Finally, volatility is not affected by the XBID.

Multiple linear regression methods like OLS and Weighted Least Squares (WLS), a GARCH, and
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Figure 9. Example of day-ahead and intraday hourly prices [48].

an SVR model were investigated to forecast the per-minute price of the last trading hour for the German
intraday market [27]. The analysis and experiment indicated that all the models outperformed the naı̈ve
and benchmark models in terms of minimizing prediction errors. The best performance was shown by
the GARCH and SVM with less deviation in prices than benchmark models. Linear regression and
SVM stood second and third respectively according to the absolute error. The study has found that the
price does not behave completely randomly but changes in relation to endogenous information.

Hamilton et al. [64] designed a hybrid SVR and FANN-based model to forecast very short-term
electricity prices of the National Electricity Market in Australia. The six variables used in this
forecasting model were date/time, historical price, historical demand, rain, temperature, and natural
gas prices. At first, multiple SVRs were used to preprocess the selection of pairs of strongly correlated
variables and filter out the extreme outliers that skew the forecast. A sigmoid kernel was used for
SVM training. Later, data that exhibited weak or no correlations were fed directly and independently
into the FANN to determine its relevance to the forecast price. Results have shown that the hybrid
model performed better than the individual SVR and FANN models in terms of overall accuracy and
precision. The model built by the averaging of individual SVR and SVR-FANN predictions exhibited
the best performance in terms of predicting the magnitude and duration of price spikes, as well as
rapidly changing trends. Future research could include improvement in the accuracy of price spike
forecasting through the use of neural computation and iterative methods, with the inclusion of more
variables such as bidding and rebidding strategies and generator availability.

Scholz et al. [53] presented shallow and deep learning methods to predict the 15 min electricity
prices in the German intraday market. The extreme gradient boosting (XG-Boost) and random forests
were the two types of shallow learning-based models employed in the study, and the other was the
LSTM-based deep learning model. A rolling window was created to model the VWP during intraday
data. The comparison of these machine learning models with the state-of-the-art baseline models
showed that the latter type was outperformed by the former. The LSTM model performed the best
followed by the XG-Boost model. A multi-step time series prediction was also carried out to forecast
the prices for the next 4 hours, but a study showed that the accuracy of prediction decreases with
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the time horizon. Future work should contribute to enhancing the performance of the algorithm by
integrating more influencing factors of the intraday market, an extension of the forecast period, possible
use of a convolutional neural network, etc.

2.4.2. Volume

Demirtas [59] proposed 15 different types of machine learning models to predict the energy
imbalance or net loading in the Turkish intraday and balance the energy market for the future 32
hours up to the delivery time. Prediction of net loading can be useful for making profitable trades
in the intraday market. The ensemble model that consisted of linear regression, LASSO, elastic net
and gradient boosting models outperformed the naı̈ve model for the study of T + 1 to T + 32 hours.
In addition to that, techniques such as stacking and elastic net ensemble models also showed better
performance. Additional studies include understanding how the models work on the prices for the
intraday market. Table 5 provides an overview of ensemble and hybrid forecasting methods.

3. Discussion

In this review paper, we comprehensively examined various intraday forecasting techniques applied
in electricity markets. Our analysis aimed to provide a comprehensive overview of the diverse
methodologies employed to forecast intraday electricity prices, volume and price volatility. The
synthesis of these techniques has illuminated key trends, challenges and areas of potential improvement
in the field of intraday market forecasting. One prominent observation from our analysis is the wide
array of statistical, machine learning and ensemble techniques that have been utilized in intraday
forecasting. This diversity underscores the complexity of the intraday electricity market, necessitating
the adoption of a variety of approaches to capture its nuances accurately. Statistical and econometric
models play a pivotal role in understanding and quantifying the intricate relationships, dependencies
and patterns within complex systems. In the context of intraday electricity markets, these models
prove to be indispensable tools for forecasting electricity prices, volumes, and volatility. They
accomplish this by incorporating a multitude of factors, including supply and demand dynamics,
market fundamentals and exogenous variables. Statistical and econometric models serve as essential
tools for understanding and quantifying the relationships, dependencies, and patterns within complex
systems. In the context of intraday electricity markets, statistical and econometric models play a
pivotal role in forecasting electricity prices, volumes and volatility by incorporating various factors
such as supply and demand dynamics, market fundamentals and exogenous variables. The study
encompasses a comprehensive spectrum of distinct statistical and econometric models, covering
regression-based methodologies, LASSO-estimated models, time series-based approaches, auction
curve-based techniques, GAM, point forecast models, historical market simulators and MDP, PCA and
LOB models. Each of these analytical paradigms contributes a distinct facet to the intricate tapestry of
intraday electricity market forecasting. Regression-based models offer structured insights into variable
relationships, while LASSO estimation aids in variable selection and regularization. Time series
models capture temporal dynamics, auction curve-based techniques incorporate market mechanisms
and GAM introduces flexibility for nonlinearity. Point forecast models provide succinct predictions,
historical market simulators replicate past behaviors, the MDP contributes decision-making insights,
PCA extracts essential features, and LOB models offer granular insights into market orders.
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Machine learning techniques, such as ANN, LSTM, ESN, GRU and FANN techniques have gained
traction due to their ability to capture complex nonlinear relationships and adapt to changing market
conditions. They share the commonality of being neural network-based approaches that can capture
intricate patterns and relationships in data. ANNs excel in nonlinear mapping, while LSTM and
GRU models efficiently manage sequential data with memory and gating mechanisms. ESNs leverage
reservoir computing and FANNs provide simplicity and computational efficiency. The integration of
historical data, market fundamentals, and exogenous variables has improved the predictive accuracy
of these models. The choice of model depends on data characteristics and forecasting requirements,
offering researchers a spectrum of options to optimize predictive performance and potentially explore
hybrid strategies for further advancement.

Ensemble and hybrid methods, leveraging the strengths of multiple techniques, have showcased
heightened robustness and reliability, thereby contributing to improved forecasting performance.
Notably, the implementation of gradient boosting, random forest approaches, tree-based models, SVR,
and SVR-FANN has demonstrated a remarkable leap in predictive performance. The concept of
gradient boosting, characterized by its sequential improvement of weak learners, offers a dynamic
mechanism to aggregate predictive power, resulting in a robust overall model. In a similar vein, the
random forest approach capitalizes on the aggregation of decision trees, fortifying the model against
the pitfalls of overfitting and noise inherent in complex datasets. The efficacy of tree-based models,
encompassing both decision trees and their ensemble counterparts, lies in their adeptness at capturing
intricate relationships within the data through hierarchical structures. On the other hand, the application
of SVR introduces a nonlinear dimension to forecasting, as it skillfully transforms data into higher-
dimensional spaces to unveil underlying patterns. Furthermore, the fusion of SVR with a FANN, aptly
termed SVR-FANN, exemplifies a synthesis of techniques that transcend the capabilities of individual
components. This hybrid approach allows for the nuanced capture of complex data patterns, enabling
enhanced accuracy in terms of predicting electricity prices. In the realm of electricity price forecasting,
the utilization of ensemble and hybrid methods has emerged as a promising avenue, showcasing their
distinct advantages over traditional machine learning and statistical techniques.

Throughout our analysis, the influence of renewable energy sources on intraday forecasting emerged
as a key focus area. Wind and solar power generation pose challenges due to their intermittent nature,
requiring specialized techniques to account for their impact on price formation and demand patterns.
The inclusion of renewable forecasts has shown potential for enhancing accuracy, though challenges
related to their volatility and uncertainty warrant further investigation. Furthermore, our examination
revealed the significance of incorporating exogenous variables such as weather forecasts, supply-
demand imbalances, and market state indicators. These variables contribute valuable information for
the modeling of intraday dynamics, enhancing the precision of forecasts and capturing the effects of
external influences. While this review provides a comprehensive understanding of intraday forecasting
techniques, several avenues for future research have emerged. The development of hybrid models
that leverage the strengths of different techniques holds promise for further improving accuracy and
robustness. Exploring the incorporation of advanced data sources, such as real-time data, could lead to
deeper insights and more accurate forecasts.
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4. Conclusions

This review paper contributes a synthesized overview of intraday forecasting techniques, shedding
light on the evolution, challenges and potential advancements in this dynamic field. The diversity
of approaches and the incorporation of emerging technologies offer a promising path toward more
accurate and reliable intraday electricity market forecasts. As the energy landscape continues to
evolve, continuous research and innovation will play a pivotal role in refining and advancing intraday
forecasting methodologies. The accessibility of data furnishes researchers with valuable insights for the
analysis and refinement of intraday electricity forecasting models, ultimately contributing to enhanced
accuracy.
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24. Bokde N, Feijóo A, N Al-Ansari, et al. (2020) The hybridization of ensemble empirical mode
decomposition with forecasting models: Application of short-term wind speed and power
modeling. Energies 13: 1666. https://doi.org/10.3390/en13071666

25. Bourry F, Kariniotakis G (2009) Strategies for wind power trading in sequential short-term
electricity markets. In: European wind energy conference (EWEC).

26. Hagemann S (2015) Price determinants in the German intraday market for
electricity: An empirical analysis. J Energy Mark, EWL Working Paper No. 18/2013.
https://dx.doi.org/10.2139/ssrn.2352854

27. Michel N (2018) Analysis and forecast of intraday prices based on econometric models and
machine-learning algorithms. Ph.D. thesis, University of Duisburg-Essen.

28. Weron R (2014) Electricity price forecasting: A review of the state-of-the-art with a look into the
future. Int J Forecasting 30: 1030–1081. https://doi.org/10.1016/j.ijforecast.2014.08.008

29. Berger J, Yalcinoz T, Rudion K (2020) Investigating the intraday continuous electricity market
using auto regression integrated moving average model with exogenous inputs. In: 2020 IEEE
International Conference on Environment and Electrical Engineering and 2020 IEEE Industrial
and Commercial Power Systems Europe (EEEIC/I&CPS Europe), 1–6.

30. Kulakov S, Ziel F (2021) The impact of renewable energy forecasts on intraday electricity prices.
Econ Energy Environ Policy 10: 1–2. Available from: https://ideas.repec.org/a/aen/eeepjl/eeep10-
1-kulakov.html.

31. Maciejowska K, Nitka W, Weron T (2019) Day-ahead vs. intraday—Forecasting the price spread
to maximize economic benefits. Energies 12: 631. https://doi.org/10.3390/en12040631

32. Kremer M, Kiesel R, Paraschiv F (2021) An econometric model for intraday electricity trading.
Philos Trans Royal Soc A 379: 20190624. https://dx.doi.org/10.2139/ssrn.3489214

33. Glas S, Kiesel R, Kolkmann S, et al. (2019) Intraday renewable electricity trading: Advanced
modeling and optimal control. In: Progress in industrial mathematics at ECMI 2018, Springer,
469–475.
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