54 research outputs found

    COVID-19-Related Coagulopathy—Is Transferrin a Missing Link?

    Get PDF
    SARS-CoV-2 is the causative agent of COVID-19. Severe COVID-19 disease has been associated with disseminated intravascular coagulation and thrombosis, but the mechanisms underlying COVID-19-related coagulopathy remain unknown. The risk of severe COVID-19 disease is higher in males than in females and increases with age. To identify gene products that may contribute to COVID-19-related coagulopathy, we analyzed the expression of genes associated with the Gene Ontology (GO) term “blood coagulation” in the Genotype-Tissue Expression (GTEx) database and identified four procoagulants, whose expression is higher in males and increases with age (ADAMTS13, F11, HGFAC, KLKB1), and two anticoagulants, whose expression is higher in females and decreases with age (C1QTNF1, SERPINA5). However, the expression of none of these genes was regulated in a proteomics dataset of SARS-CoV-2-infected cells and none of the proteins have been identified as a binding partner of SARS-CoV-2 proteins. Hence, they may rather generally predispose individuals to thrombosis without directly contributing to COVID-19-related coagulopathy. In contrast, the expression of the procoagulant transferrin (not associated to the GO term “blood coagulation”) was higher in males, increased with age, and was upregulated upon SARS-CoV-2 infection. Hence, transferrin warrants further examination in ongoing clinic-pathological investigation

    SARS-CoV-2 Omicron variant virus isolates are highly sensitive to interferon treatment

    Get PDF
    The SARS-CoV-2 Omicron variant (B.1.1.529) causes less severe disease than previous SARS-CoV-2 variants, although immune protection provided by vaccinations and previous infections is reduced against Omicron compared to previous variants. In agreement, evidence is emerging that Omicron is inherently less pathogenic than previous SARS-CoV-2 variants. Omicron variant viruses cause less severe disease in animal studies and appear to display a lower capacity than other variants to replicate in the lower respiratory tract. Additionally, initial clinical data indicated that the Omicron variant causes less severe disease than previous SARS-CoV-2 variants in unvaccinated individuals. We have most recently shown that Omicron variant viruses are less effective at antagonizing the host cell interferon response than Delta variant viruses, which provides a mechanistic explanation for the reduced clinical severity of Omicron disease in individuals without pre-existing adaptive immunity. Omicron virus replication was attenuated relative to Delta virus in interferon-competent Caco-2 and Calu-3 cells, but not in interferon-deficient Vero cells, and Omicron viruses caused enhanced interferon promoter activity compared to Delta viruses. Additionally, depletion of the pattern recognition receptor MDA5, which plays a critical role in SARS-CoV-2 detection and interferon response initiation4, resulted in increased Omicron virus replication in interferon-competent cells. The exact molecular reasons for the alleviated interferon response antagonism by Omicron viruses remain to be elucidated. Notably, the Omicron and Delta virus isolates that we investigated (see Supplementary Information) display sequence variants in the viral interferon antagonists nsp3, nsp12, nsp13, nsp14, the membrane (M) protein, the nucleocapsid protein, and ORF3a5 (Supplementary Table S1), which may be of relevance

    Trifluridine for treatment of mpox infection in drug combinations in ophthalmic cell models

    Get PDF
    The Mpox virus can cause severe disease in the susceptible population with dermatologic and systemic manifestations. Furthermore, ophthalmic manifestations of mpox infection are well documented. Topical trifluridine (TFT) eye drops have been used for therapy of ophthalmic mpox infection in patients, however, its efficacy against mpox virus infection in this scenario has not been previously shown. In the present study, we have established ophthalmic cell models suitable for the infection with mpox virus. We show, that TFT is effective against a broad range of mpox isolates in conjunctival epithelial cells and keratocytes. Further, TFT remained effective against a tecovirimat-resistant virus strain. In the context of drug combinations, a nearly additive effect was observed for TFT combinations with brincidofovir and tecovirimat in conjunctival epithelial cells, while a slight antagonism was observed for both combinations in keratocytes. Altogether, our findings demonstrate TFT as a promising drug for treatment of ophthalmic mpox infection able to overcome tecovirimat resistance. However, conflicting results regarding the effect of drug combinations with approved compounds warrant close monitoring of such use in patients

    Enisamium Inhibits SARS-CoV-2 RNA Synthesis.

    Get PDF
    Pandemic SARS-CoV-2 causes a mild to severe respiratory disease called coronavirus disease 2019 (COVID-19). While control of the SARS-CoV-2 spread partly depends on vaccine-induced or naturally acquired protective herd immunity, antiviral strategies are still needed to manage COVID-19. Enisamium is an inhibitor of influenza A and B viruses in cell culture and clinically approved in countries of the Commonwealth of Independent States. In vitro, enisamium acts through metabolite VR17-04 and inhibits the activity of the influenza A virus RNA polymerase. Here we show that enisamium can inhibit coronavirus infections in NHBE and Caco-2 cells, and the activity of the SARS-CoV-2 RNA polymerase in vitro. Docking and molecular dynamics simulations provide insight into the mechanism of action and indicate that enisamium metabolite VR17-04 prevents GTP and UTP incorporation. Overall, these results suggest that enisamium is an inhibitor of SARS-CoV-2 RNA synthesis in vitro

    Aprotinin Inhibits SARS-CoV-2 Replication

    Get PDF
    Severe acute respiratory syndrome virus 2 (SARS-CoV-2) is the cause of the current coronavirus disease 19 (COVID-19) pandemic. Protease inhibitors are under consideration as virus entry inhibitors that prevent the cleavage of the coronavirus spike (S) protein by cellular proteases. Herein, we showed that the protease inhibitor aprotinin (but not the protease inhibitor SERPINA1/alpha-1 antitrypsin) inhibited SARS-CoV-2 replication in therapeutically achievable concentrations. An analysis of proteomics and translatome data indicated that SARS-CoV-2 replication is associated with a downregulation of host cell protease inhibitors. Hence, aprotinin may compensate for downregulated host cell proteases during later virus replication cycles. Aprotinin displayed anti-SARS-CoV-2 activity in different cell types (Caco2, Calu-3, and primary bronchial epithelial cell air–liquid interface cultures) and against four virus isolates. In conclusion, therapeutic aprotinin concentrations exert anti-SARS-CoV-2 activity. An approved aprotinin aerosol may have potential for the early local control of SARS-CoV-2 replication and the prevention of COVID-19 progression to a severe, systemic disease

    Omicron‐induced interferon signaling prevents influenza A H1N1 and H5N1 virus infection

    Get PDF
    Recent findings in permanent cell lines suggested that SARS‐CoV‐2 Omicron BA.1 induces a stronger interferon response than Delta. Here, we show that BA.1 and BA.5 but not Delta induce an antiviral state in air‐liquid interface cultures of primary human bronchial epithelial cells and primary human monocytes. Both Omicron subvariants caused the production of biologically active types I (α/ÎČ) and III (λ) interferons and protected cells from super‐infection with influenza A viruses. Notably, abortive Omicron infection of monocytes was sufficient to protect monocytes from influenza A virus infection. Interestingly, while influenza‐like illnesses surged during the Delta wave in England, their spread rapidly declined upon the emergence of Omicron. Mechanistically, Omicron‐induced interferon signaling was mediated via double‐stranded RNA recognition by MDA5, as MDA5 knockout prevented it. The JAK/STAT inhibitor baricitinib inhibited the Omicron‐mediated antiviral response, suggesting it is caused by MDA5‐mediated interferon production, which activates interferon receptors that then trigger JAK/STAT signaling. In conclusion, our study (1) demonstrates that only Omicron but not Delta induces a substantial interferon response in physiologically relevant models, (2) shows that Omicron infection protects cells from influenza A virus super‐infection, and (3) indicates that BA.1 and BA.5 induce comparable antiviral states

    Biochemical characterization of protease activity of Nsp3 from SARS-CoV-2 and its inhibition by nanobodies

    Get PDF
    Of the 16 non-structural proteins (Nsps) encoded by SARS CoV-2, Nsp3 is the largest and plays important roles in the viral life cycle. Being a large, multidomain, transmembrane protein, Nsp3 has been the most challenging Nsp to characterize. Encoded within Nsp3 is the papain-like protease domain (PLpro) that cleaves not only the viral polypeptide but also K48-linked polyubiquitin and the ubiquitin-like modifier, ISG15, from host cell proteins. We here compare the interactors of PLpro and Nsp3 and find a largely overlapping interactome. Intriguingly, we find that near full length Nsp3 is a more active protease compared to the minimal catalytic domain of PLpro. Using a MALDI-TOF based assay, we screen 1971 approved clinical compounds and identify five compounds that inhibit PLpro with IC50s in the low micromolar range but showed cross reactivity with other human deubiquitinases and had no significant antiviral activity in cellular SARS-CoV-2 infection assays. We therefore looked for alternative methods to block PLpro activity and engineered competitive nanobodies that bind to PLpro at the substrate binding site with nanomolar affinity thus inhibiting the enzyme. Our work highlights the importance of studying Nsp3 and provides tools and valuable insights to investigate Nsp3 biology during the viral infection cycle

    A Potential Role of the CD47/SIRPalpha Axis in COVID-19 Pathogenesis

    Get PDF
    The coronavirus SARS-CoV-2 is the cause of the ongoing COVID-19 pandemic. Most SARS-CoV-2 infections are mild or even asymptomatic. However, a small fraction of infected individuals develops severe, life-threatening disease, which is caused by an uncontrolled immune response resulting in hyperinflammation. However, the factors predisposing individuals to severe disease remain poorly understood. Here, we show that levels of CD47, which is known to mediate immune escape in cancer and virus-infected cells, are elevated in SARS-CoV-2-infected Caco-2 cells, Calu-3 cells, and air−liquid interface cultures of primary human bronchial epithelial cells. Moreover, SARS-CoV-2 infection increases SIRPalpha levels, the binding partner of CD47, on primary human monocytes. Systematic literature searches further indicated that known risk factors such as older age and diabetes are associated with increased CD47 levels. High CD47 levels contribute to vascular disease, vasoconstriction, and hypertension, conditions that may predispose SARS-CoV-2-infected individuals to COVID-19-related complications such as pulmonary hypertension, lung fibrosis, myocardial injury, stroke, and acute kidney injury. Hence, age-related and virus-induced CD47 expression is a candidate mechanism potentially contributing to severe COVID-19, as well as a therapeutic target, which may be addressed by antibodies and small molecules. Further research will be needed to investigate the potential involvement of CD47 and SIRPalpha in COVID-19 pathology. Our data should encourage other research groups to consider the potential relevance of the CD47/ SIRPalpha axis in their COVID-19 research

    Repurposing of the antibiotic nitroxoline for the treatment of mpox

    Get PDF
    The antiviral drugs tecovirimat, brincidofovir, and cidofovir are considered for mpox (monkeypox) treatment despite a lack of clinical evidence. Moreover, their use is affected by toxic side‐effects (brincidofovir, cidofovir), limited availability (tecovirimat), and potentially by resistance formation. Hence, additional, readily available drugs are needed. Here, therapeutic concentrations of nitroxoline, a hydroxyquinoline antibiotic with a favourable safety profile in humans, inhibited the replication of 12 mpox virus isolates from the current outbreak in primary cultures of human keratinocytes and fibroblasts and a skin explant model by interference with host cell signalling. Tecovirimat, but not nitroxoline, treatment resulted in rapid resistance development. Nitroxoline remained effective against the tecovirimat‐resistant strain and increased the anti‐mpox virus activity of tecovirimat and brincidofovir. Moreover, nitroxoline inhibited bacterial and viral pathogens that are often co‐transmitted with mpox. In conclusion, nitroxoline is a repurposing candidate for the treatment of mpox due to both antiviral and antimicrobial activity
    • 

    corecore