11 research outputs found

    Iron status, catabolic/anabolic balance, and skeletal muscle performance in men with heart failure with reduced ejection fraction

    Get PDF
    Background: Metabolic derangements related to tissue energetics constitute an important pathophysiological feature of heart failure. We investigated whether iron deficiency and catabolic/anabolic imbalance contribute to decreased skeletal muscle performance in men with heart failure with reduced ejection fraction (HFrEF), and whether these pathologies are related to each other. Methods: We comprehensively examined 23 men with stable HFrEF (median age [interquartile range]: 63 [59–66] years; left ventricular ejection fraction: 28 [25–35]%; New York Heart Association class I/II/III: 17/43/39%). We analyzed clinical characteristics, iron status, hormones, strength and fatigability of forearm flexors and quadriceps (surface electromyography), and exercise capacity (6-minute walking test). Results: None of the patients had anemia whereas 8 were iron-deficient. Flexor carpi radialis fatigability correlated with lower reticulocyte hemoglobin content (CHR, p < 0.05), and there was a trend towards greater fatigability in patients with higher body mass index and lower serum ferritin (both p < 0.1). Flexor carpi ulnaris fatigability correlated with lower serum iron and CHR (both p < 0.05). Vastus medialis fatigability was related to lower free and bioavailable testosterone (FT and BT, respectively, both p < 0.05), and 6-minute walking test distance was shorter in patients with higher cortisol/FT and cortisol/BT ratio (both p < 0.05). Lower ferritin and transferrin saturation correlated with lower percentage of FT and BT. Men with HFrEF and iron deficiency had higher total testosterone, but lower percentage of FT and BT. Conclusions: Iron deficiency correlates with lower bioactive testosterone in men with HFrEF. These two pathologies can both contribute to decreased skeletal muscle performance in such patients

    Reżim hydrologiczno-chemiczny wód w zlewniach Bystrej i Suchej Wody (Tatrzański Park Narodowy)

    Get PDF
    The chemical composition of surface water and groundwater is subject to constant changes, which result primarily from meteorological factors (for instance, size and intensity of atmospheric precipitation), hydrological factors (for instance, the degree of hydration of the mountain massif and changes in river flows), and geological-lithological factors (the type of bedrock). The aim of the present research was to examine the hydrological and chemical regime of surface and underground waters in the Bystra and Sucha Woda mountain stream catchments. Between December 2013 and December 2016, 77 series of measurements were collected at the rhythm of twice a month (n = 611 water samples) from 8 sites, which represented both surface waters (watercourses, ponds) and underground waters (karst springs). The studied area possesses very distinct geological duality. The southern part is a crystalline region, and the northern part is made up of sedimentary rocks. During the field studies, the following have been measured: water levels of the watercourses, flow rates, and physicochemical characteristics of water, such as electrical conductivity, pH and water temperature. At the same time, water samples were collected for laboratory analyses, which included general mineralization and concentrations of Ca2+, Mg2+, Na+, K+, HCO3 –, SO42–, Cl–, NH4+, PO43–, NO3–, Li+, Br– i F– ions. The geological structure had the greatest impact on the chemical composition of waters in the Bystra stream and Sucha Woda stream catchments. The waters representing the crystalline region were characterized by significantly lower total mineralization, lower specific electrical conductivity, and lower ion concentration than water in the crystalline-sedimentary (karst) region. The average value of total mineralization in the crystalline region was 14.3 mg • dm–3, and in the crystalline-sedimentary region – 81.2 mg • dm–3. The waters in the crystalline region were characterized by a demonstrably lower pH (average pH of 6.5) than the water in the karst region (average pH of 7.7). Low values of mineralization, electrical conductivity and concentration of main ions were accompanied by increased flows during the summer and autumn. In all the waters subjected to testing, there was also a marked decrease in the value of these parameters during the spring thaw. In the feeding of streams and karst springs during this time, slightly mineralized melt-waters had their significant share. In spring, there was also the greatest variation in the chemical composition of the studied waters. This variability was clearly lower in the lower Bystra karst spring than in the Goryczkowa karst string. It was most likely related to a different rate of melt-water inflow to the two karst springs. In all the tested waters, the highest values of total mineralization, electrical conductivity and concentration of main ions occurred during the winter low discharge, which resulted from the predominance of underground feed in the river’s runoff. In all the studied waters, a clear decrease in NO3– concentration was observed during the summer and autumn months. Most probably, this was associated with increased NO3 – uptake by plants during the growing season. In the waters of streams draining the crystalline part of the Bystra stream catchment there was clearly lower nitrate concentration than in the Bystra stream waters draining the crystalline-sedimentary (karst) part. The chemical composition of the Bystra stream water, draining the crystalline-sedimentary (karst) part of the catchment, was strictly dependent on the chemical composition of groundwater from the Goryczkowy and lower Bystra karst springs

    Analysis of Industrial <i>Bacillus</i> Species as Potential Probiotics for Dietary Supplements

    No full text
    So far, Bacillus species bacteria are being used as bacteria concentrates, supplementing cleaning preparations in order to reduce odor and expel pathogenic bacteria. Here, we discuss the potential of Bacillus species as ‘natural’ probiotics and evaluate their microbiological characteristics. An industrial microbiological concentrate CS-4 of mixed Bacillus species cultures was tested, which may be a promising bacteria source for food probiotic preparation for supplementary diet. In this study, antagonistic activities and probiotic potential of Bacillus species, derived from an industrial microbiological concentrate, were demonstrated. The cell free supernatants (CFS) from Bacillus licheniformis mostly inhibited the growth of foodborne pathogenic bacteria, such as Escherichia coli O157:H7 ATCC 35150, Salmonella Enteritidis KCCM 12021, and Staphylococcus aureus KCCM 11335, while some of Bacillus strains showed synergistic effect with foodborne pathogenic bacteria. Moreover, Bacillus strains identified by the MALDI TOF-MS method were found sensitive to chloramphenicol, kanamycin, and rifampicin. B. licheniformis and B. cereus displayed the least sensitivity to the other tested antibiotics, such as ampicillin, ampicillin and sulfbactam, streptomycin, and oxacillin and bacitracin. Furthermore, some of the bacterial species detected extended their growth range from the mesophilic to moderately thermophilic range, up to 54 °C. Thus, their potential sensitivity to thermophilic TP-84 bacteriophage, infecting thermophilic Bacilli, was tested for the purpose of isolation a new bacterial host for engineered bionanoparticles construction. We reason that the natural environmental microflora of non-pathogenic Bacillus species, especially B. licheniformis, can become a present probiotic remedy for many contemporary issues related to gastrointestinal tract health, especially for individuals under metabolic strain or for the increasingly growing group of lactose-intolerant people
    corecore