802 research outputs found

    Kafka sur le rivage vu par la critique française

    Get PDF

    Madame de Sade : Mandiargues traduit Mishima

    Get PDF

    Ted Janssen

    Get PDF

    Structure factors of harmonic and anharmonic Fibonacci chains by molecular dynamics simulations

    Full text link
    The dynamics of quasicrystals is characterized by the existence of phason excitations in addition to the usual phonon modes. In order to investigate their interplay on an elementary level we resort to various one-dimensional model systems. The main observables are the static, the incoherent, and the coherent structure factor, which are extracted from molecular dynamics simulations. For the validation of the algorithms, results for the harmonic periodic chain are presented. We then study the Fibonacci chain with harmonic and anharmonic interaction potentials. In the dynamic Fibonacci chain neighboring atoms interact by double-well potentials allowing for phason flips. The difference between the structure factors of the dynamic and the harmonic Fibonacci chain lies in the temperature dependence of the phonon line width. If a bias is introduced in the well depth, dispersionless optic phonon bands split off.Comment: 12 pages, 15 figure

    Interpretation of some Yb-based valence-fluctuating crystals as approximants to a dodecagonal quasicrystal

    Full text link
    The hexagonal ZrNiAl-type (space group: P-62m) and the tetragonal Mo2FeB2-type (space group: P4/mbm) structures, which are frequently formed in the same Yb-based alloys and exhibit physical properties related to valence-fluctuation, can be regarded as approximants of a hypothetical dodecagonal quasicrystal. Using Pd-Sn-Yb system as an example, a model of quasicrystal structure has been constructed, of which 5-dimensional crystal (space group: P12/mmm, aDD=5.66 {\AA} and c=3.72 {\AA}) consists of four types of acceptance regions located at the following crystallographic sites; Yb [00000], Pd[1/3 0 1/3 0 1/2], Pd[1/3 1/3 1/3 1/3 0] and Sn[1/2 00 1/2 1/2]. In the 3-dimensional space, the quasicrystal is composed of three types of columns, of which c-projections correspond to a square, an equilateral triangle and a 3-fold hexagon. They are fragments of two known crystals, the hexagonal {\alpha}-YbPdSn and the tetragonal Yb2Pd2Sn structures. The model of the hypothetical quasicrystal may be applicable as a platform to treat in a unified manner the heavy fermion properties in the two types of Yb-based crystals.Comment: 19 pages, 6 figure

    On the problem of the relation between phason elasticity and phason dynamics in quasicrystals

    Full text link
    It has recently been claimed that the dynamics of long-wavelength phason fluctuations has been observed in i-AlPdMn quasicrystals. We will show that the data reported call for a more detailed development of the elasticity theory of Jaric and Nelsson in order to determine the nature of small phonon-like atomic displacements with a symmetry that follows the phason elastic constants. We also show that a simple model with a single diffusing tile is sufficient to produce a signal that (1) is situated at a "satellite position'' at a distance q from each Bragg peak, that (2) has an intensity that scales with the intensity of the corresponding Bragg peak, (3) falls off as 1/q-squared and (4) has a time decay constant that is proportional to 1/(D q-squared). It is thus superfluous to call for a picture of "phason waves'' in order to explain such data, especially as such "waves'' violate many physical principles.Comment: 36 pages, 0 figures, discussion about vacancies, fluctuating Fourier components, and difference between static and dynamical structure factors added, other addition
    corecore