54 research outputs found

    Carbon Footprint and Energy Recovery Potential of Primary Wastewater Treatment in Decentralized Areas: A Critical Review on Septic and Imhoff Tanks

    Get PDF
    The present work is a critical review on the carbon footprint and energy recovery potential of septic and Imhoff tanks for primary wastewater treatment. From an online search of research papers, a lack of up-to-date research about gas emissions from Imhoff tanks emerged. Additionally, available literature data should be extended to incorporate the effect of seasonal variations, which may be relevant due to the fact that both systems work under environmental conditions. The literature generally agrees on the positive effect of temperature increase on biogas and methane production from both septic and Imhoff tanks. Additionally, sludge withdrawal is an important operational feature for gas production in these reactors. More recently, the application of electrochemical technologies and the installation of photovoltaic modules have been studied to enhance the sustainability of these decentralized solutions; in addition, sludge pretreatment has been investigated to raise the obtainable methane yields due to limited sludge biodegradability. Further research is needed to assess the effective sustainability of biogas collection and valorization from existing septic and Imhoff tanks, considering the limited biogas generation and the implementation of these systems in decentralized wastewater treatment scenarios (rural or mountain areas). Contrary to the intensive research on greenhouse gas mitigation strategies applied to centralized systems, solutions specifically designed for gas emission mitigations from septic and Imhoff tanks have not attracted the same scientific interest up to now. More generally, given the widespread application of these two options and their potential significant contribution to the overall carbon footprint of wastewater treatment technologies, much more research must be performed in the future both on the quantification of gas production and on the applicable strategies to reduce their carbon footprint

    Conjugated Thiophene-Fused Isatin Dyes through Intramolecular Direct Arylation

    Get PDF
    We report on the design, synthesis, and properties of innovative, planar, π-conjugated compounds in which a thiophene ring is fused with the skeleton of the naturally occurring dye isatin. The synthesis is achieved in high yields making use of an intramolecular direct arylation reaction as the key step, making the overall process potentially scalable. The synthetic sequence has been demonstrated also for an isatin bearing fluorine substituents on the aromatic ring. NMR and X-ray studies demonstrate the crosstalk occurring between the fused, coplanar, and conjugated moieties, making these novel dyes with a donor–acceptor character. Cyclic voltammetry and UV–vis studies confirm very interesting HOMO–LUMO levels and energy gaps for the new compounds

    A study on the carbon footprint contributions from a large wastewater treatment plant

    Get PDF
    The present work analyses aspects of the carbon footprint of a large wastewater treatment plant in central Italy. The plant mainly consists of a traditional activated sludge system along with an anaerobic digester providing a partial contribution of energy to the management. An integrated approach was adopted to evaluate the environmental sustainability of the treatment plant in terms of carbon footprint. For the assessment different sources of greenhouse gas emissions such as nitrous oxide and carbon dioxide were considered: effluent, production and transport of natural gas, energy consumption, boiler, co-generator, substrate and endogenous decays. According to the methodology adopted, energy consumption, production and transport of natural gas and N2O emissions from the effluent were found the most contributing sources of greenhouse gases. Based on this, these sources are suggested as the most relevant ones on which wastewater treatment plant managers should pay more attention when taking actions for carbon footprint mitigation. Considerations on the role of CO2 of biogenic origin (specifically the one in the biogas) in terms of sequestration options demonstrate that the analysis in this field should not be limited to the calculation and comment of non-fossil contributions to the overall balance
    • …
    corecore