10 research outputs found
Selectivity of 1-O-Propargyl-d-Mannose Preparations
Thanks to their ability to bind to specific biological receptors, mannosylated structures are examined in biomedical applications. One of the most common ways of linking a functional moiety to a structure is to use an azide-alkyne click reaction. Therefore, it is necessary to prepare and isolate a propargylated mannose derivative of high purity to maintain its bioactivity. Three known preparations of propargyl-α-mannopyranoside were revisited, and products were analysed by NMR spectroscopy. The preparations were shown to yield by-products that have not been described in the literature yet. Our experiments showed that one-step procedures could not provide pure propargyl-α-mannopyranoside, while a three-step procedure yielded the desired compound of high purity
Effective poly(ethylene glycol) methyl ether grafting technique onto Nylon 6 surface to achieve resistance against pathogenic bacteria Staphylococcus aureus and Pseudomonas aeruginosa.
Our study is focused on an efficient reduction of amide functional groups to secondary amine on Nylon 6 surface with borane–tetrahydrofuran (BH3–THF) complex, followed by N-alkylation with benzyl chloride (C6H5CH2Cl) which has been successfully used as a model system for further grafting of the reduced Nylon 6 surface by poly(ethylene glycol) methyl ether tosylate (Me-PEG-OTs). The amine-activated surface has been obtained by treatment of reduced Nylon 6 with n-butyllithium or tert-butyllithium in THF. Modified Nylon 6 has been found to be antibacterial particularly due to the presence of hydrophilic poly(ethylene glycol) methyl ether (H3C-PEG) chains. The surface modifications were successfully characterized by various techniques. Water contact angle and free surface energy analyses indicated a significant change in the surface morphology. It was further supported by scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy and Raman spectroscopy. Finally, antibacterial tests were performed against two pathogenic bacterial strains Pseudomonas aeruginosa (CCM 3955) and Staphylococcus aureus (CCM 3953)
Enantioseparations of non-benzenoid and oligo-Tröger's bases by HPLC on Whelk O1 column
The separation of enantiomers of several 'bis- and tris-Tröger's bases' by HPLC on commercially available chiral stationary phase Whelk O1 is described for the first time. The observed structure-enantioselectivity relationships are in agreement with the previously established molecular recognition model. For all 'bis- and tris-Tröger's bases' studied, satisfactory to excellent enantioselectivities were observed. © 2009 Elsevier Ltd. All rights reserved.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
Heterocyclic sterol probes for live monitoring of sterol trafficking and lysosomal storage disorders
Abstract The monitoring of intracellular cholesterol homeostasis and trafficking is of great importance because their imbalance leads to many pathologies. Reliable tools for cholesterol detection are in demand. This study presents the design and synthesis of fluorescent probes for cholesterol recognition and demonstrates their selectivity by a variety of methods. The construction of dedicated library of 14 probes was based on heterocyclic (pyridine)-sterol derivatives with various attached fluorophores. The most promising probe, a P1-BODIPY conjugate FP-5, was analysed in detail and showed an intensive labelling of cellular membranes followed by intracellular redistribution into various cholesterol rich organelles and vesicles. FP-5 displayed a stronger signal, with faster kinetics, than the commercial TF-Chol probe. In addition, cells with pharmacologically disrupted cholesterol transport, or with a genetic mutation of cholesterol transporting protein NPC1, exhibited strong and fast FP-5 signal in the endo/lysosomal compartment, co-localizing with filipin staining of cholesterol. Hence, FP-5 has high potential as a new probe for monitoring cholesterol trafficking and its disorders
Experimental, Spectroscopic, and Computational Insights into the Reactivity of “Methanal” with 2-Naphthylamines
The reactions of 2-naphthylamine and methyl 6-amino-2-naphthoate with formalin and paraformaldehyde were studied experimentally, spectrally, and by quantum chemical calculations. It was found that neither the corresponding aminals nor imines were formed under the described conditions but could be prepared and spectrally characterized at least in situ under modified conditions. Several of the previously undescribed intermediates and by-products were isolated or at least spectrally characterized. First principle density functional theory (DFT) calculations were performed to shed light on the key aspects of the thermochemistry of decomposition and further condensation of the corresponding aminals and imines. The calculations also revealed that the electrophilicity of methanal was significantly greater than that of ordinary oxo-compounds, except for perfluorinated ones. In summary, methanal was not behaving as the simplest aldehyde but as a very electron-deficient oxo-compound
Steroid Glycosides Hyrcanoside and Deglucohyrcanoside: On Isolation, Structural Identification, and Anticancer Activity
Cardiac glycosides (CGs) represent a group of sundry compounds of natural origin. Most CGs are potent inhibitors of Na+/K+-ATPase, and some are routinely utilized in the treatment of various cardiac conditions. Biological activities of other lesser known CGs have not been fully explored yet. Interestingly, the anticancer potential of some CGs was revealed and thereby, some of these compounds are now being evaluated for drug repositioning. However, high systemic toxicity and low cancer cell selectivity of the clinically used CGs have severely limited their utilization in cancer treatment so far. Therefore, in this study, we have focused on two poorly described CGs: hyrcanoside and deglucohyrcanoside. We elaborated on their isolation, structural identification, and cytotoxicity evaluation in a panel of cancerous and noncancerous cell lines, and on their potential to induce cell cycle arrest in the G2/M phase. The activity of hyrcanoside and deglucohyrcanoside was compared to three other CGs: ouabain, digitoxin, and cymarin. Furthermore, by in silico modeling, interaction of these CGs with Na+/K+-ATPase was also studied. Hopefully, these compounds could serve not only as a research tool for Na+/K+-ATPase inhibition, but also as novel cancer therapeutics