64 research outputs found

    CFD Simulation of the Discharge Flow from Standard Rushton Impeller

    Get PDF
    The radial discharge jet from the standard Rushton turbine was investigated by the CFD calculations and compared with results from the Laser Doppler Anemometry (LDA) measurements. The Large Eddy Simulation (LES) approach was employed with Sliding Mesh (SM) model of the impeller motion. The obtained velocity profiles of the mean ensemble-averaged velocity and r.m.s. values of the fluctuating velocity were compared in several distances from the impeller blades. The calculated values of mean ensemble-averaged velocities are rather in good agreement with the measured ones as well as the derived power number from calculations. However, the values of fluctuating velocities are obviously lower from LES calculations than from LDA measurements

    CFD simulation of turbulent velocity field in the discharge streem from a standard Rushton turbine impeller

    Get PDF
    The velocity field around the standard Rushton turbine was investigated by the Computational Fluid Dynamics (CFD) calculations and compared with results obtained from the Laser Doppler Anemometry (LDA) measured in a pilot plant baffled cylindrical vessel. For calculations the Large Eddy Simulation (LES) approach was employed. The impeller motion was modeled using the Sliding Mesh technique (SM). The mean ensemble-averaged velocity profiles and root mean square values of fluctuations were compared in the radial discharge jet from the standard Rushton turbine under turbulent regime of flow of agitated liquid. There were found two subregions in the discharge stream and the values of the axial profiles of the radial component of the fluctuating velocity are rather same determined from the LES calculations and from the LDA measurements in the second one ZEF (zone of established flow) of the impeller discharge stream, but they differ in the first region ZFE (zone of flow establishment) in the impeller vicinity, although they exhibit the same shape. The impeller power number derived from calculations shows also good agreement with values introduced in literature with a significant influence of the thickness of the impeller disc

    LDA measurements and turbulence spectral analysis in an agitated vessel

    No full text
    During the last years considerable improvement of the derivation of turbulence power spectrum from Laser Doppler Anemometry (LDA) has been achieved. The irregularly sampled LDA data is proposed to approximate by several methods e.g. Lomb-Scargle method, which estimates amplitude and phase of spectral lines from missing data, methods based on the reconstruction of the auto-correlation function (referred to as correlation slotting technique), methods based on the reconstruction of the time series using interpolation between the uneven sampling and subsequent resampling etc. These different methods were used on the LDA data measured in an agitated vessel and the results of the power spectrum calculations were compared. The measurements were performed in the mixing vessel with flat bottom. The vessel was equipped with four baffles and agitated with a six-blade pitched blade impeller. Three values of the impeller speed (Reynolds number) were tested. Long time series of the axial velocity component were measured in selected points. In each point the time series were analyzed and evaluated in a form of power spectrum

    Evaluation of the dissipation of the turbulent kinetic energy from gradients measured in mixing vessel

    No full text
    Dissipation of the turbulent kinetic energy in mixing vessels is important parameter in mixing process. According to the latest findings it is also in the most cases the control process. This study shows a limits of dissipation rate evaluation using the velocity field obtained from the PIV (Particle Image Velocimetry) results

    In-situ measurement of particle size distribution in an agitated vessel

    No full text
    Agitation of solid-liquid suspension or two immiscible liquids is a frequent operation in chemical and metallurgical industries (suspension/emulsion polymerization, catalytic chemical reaction, hydrometallurgical solvent extraction). The product quality, yield and economy of the processes are significantly affected by a mixing process. Prediction of mean particle/drop size and particle/drop size distribution (PSD) during the agitation is fundamental for emulsification, suspension polymerization, solid particle dispersion or crystallization. \nThe aim of this contribution is to propose a simple method of in-situ measurement of particle size distribution. The particle size measurement is based on an image analysis performed on raw image records. Evaluation method based on the best focused particles with sharp detected boundaries enhanced by the analysis of particle circularity was developed. Precise spherical mono-disperse steel and plastic particles were used to verify accuracy of evaluation method. The method has been proposed for the measurement of the time evolution of the drop size distribution in liquid-liquid dispersion in an agitated tank. The effect of droplet size distribution on the impeller speed in wateroil dispersion in agitated vessel was obtained

    Evaluation of the turbulent kinetic dissipation rate in an agitated vessel

    No full text
    The design of agitated tanks depends on operating conditions and processes for that are used for. An important parameter for the scale-up modelling is the dissipation rate of the turbulent kinetic energy. The dissipation rate is commonly assumed to be a function of the impeller power input. But this approach gives no information about distribution of the dissipation rate inside the agitated volume. In this paper the distributions of the dissipation rate inside the agitated vessels are estimated by evaluations of the CFD (Computational Fluid Dynamics). The results obtained from RANS (Reynolds Averaged Navier-Stokes equations) k-epsilon turbulent model and LES (Large Eddy Simulations) with Smagorinsky SGS (Sub Grid Scale) model are compared. The agitated vessels with standard geometry equipped with four baffles and stirred by either a standard Rushton turbine or a high shear impeller were investigated. The results are compared with mean dissipation rate estimated from the total impeller power input

    Comparison of measured instantaneous velocities and a calculated flow in an agitated vessel

    No full text
    Proces míchání je řízen změnami rychlostního pole a tvorbou vírových struktur v průběhu pracovního cyklu. V této studii porovnáváme výsledky CFD výpočtů s výsledky měření střední prostorově průměrované rychlosti, a také polohově závislé rychlosti odpovídající otáčivému pohybu míchadla, při kterém vznikají vírové struktury. Experimentální data časových řad dvourozměrných vektorových map rychlostí byly získány pomocí TR PIV měření v oblasti míchadla. Pro získání hodnot okamžitých rychlostí a vírových struktur bylo použito modelování pomocí LES v kombinaci s SM simulací pohybu oblasti s míchadlem. Získané výsledky jsou zde porovnány a aplikace použité metody diskutována

    Evaluation approaches of flow inside agitated vessels

    No full text
    The description of main evaluation approaches of flow inside agitated vessels is demonstrated on data obtained by CFD (Computational Fluid Dynamics) and compared with PIV (Particle Image Velocity) data. The results of three methods are presented and evaluated using vortex identification method. The evaluation method effect on calculations of total dissipation energy is discussed

    Simulation of collagen solution flow in rectangular capillary

    No full text
    The viscoelastic properties of foods and polymers can be evaluated from flow of the material in capillary with specified dimension and shape. The extrusion rheometer equipped by capillary with rectangular cross-section was used for determination of the rheological behaviour of water collagen solution. The measurements of the axial profiles in longitudinal direction of the total stresses at capillary wall were performed for various shear rates. The linear viscoelastic model of Oldroyd B type: White-Metzner model was used for simulation of fluid flow in OpenFOAM software package. The simulations describe the effect of relaxation time on wall total stress in convergent-divergent capillary

    Distribution of the turbulent kinetic dissipation rate in an agitated vessel

    No full text
    The design of the agitated tanks depends on the proposed operating conditions and processes\nfor that they are used for. Namely dissipation rate of the turbulent kinetic energy is important\nparameter for the scale-up modelling. The dissipation rate is commonly determined as integral\nvalue based on power input of the impeller, but without information about distribution inside\nthe agitated volume. The cumulative distributions of the dissipation rate within an agitated\nvessel are estimated by evaluations of the CFD (Computational Fluid Dynamics) results,\nwhere the data was obtained from RANS (Reynolds Averaged Navier-Stokes equations) and\nLES (Large Eddy Simulations). The simulations were performed for an agitated vessel\nequipped with four baffles and stirred by a standard Rushton turbine (tank diameter 0.3 m,\nimpeller diameter 0.1 m, off-bottom clearance half of tank diameter, impeller speed 200 rpm).\nThe values of the dissipation rate from the LES calculations were approximated by computing\nthe SGS (Sub Grid Scale) dissipation rate
    • …
    corecore