69 research outputs found
Polymorphisms in the ADRB2 gene and Graves disease: a case-control study and a meta-analysis of available evidence
<p>Abstract</p> <p>Background</p> <p>The beta-2-Adrenergic receptor (<it>ADRB2</it>) gene on chromosome 5q33.1 is an important immunoregulatory factor. We and others have previously implicated chromosomal region 5q31-33 for contribution to the genetic susceptibility to Graves disease (GD) in East-Asian populations. Two recent studies showed associations between the single nucleotide polymorphism (SNP) rs1042714 in the <it>ADRB2 </it>gene and GD. In this study, we aimed to fully investigate whether the <it>ADRB2 </it>gene conferred susceptibility to GD in Chinese population, and to perform a meta-analysis of association between <it>ADRB2 </it>and GD.</p> <p>Methods</p> <p>Approximately 1 kb upstream the transcription start site and the entire coding regions of the <it>ADRB2 </it>gene were resequenced in 48 Han Chinese individuals to determine the linkage disequilibrium (LD) patterns. Tag SNPs were selected and genotyped in a case-control collection of 1,118 South Han Chinese subjects, which included 428 GD patients and 690 control subjects. A meta-analysis was performed with the data obtained in the present samples and those available from prior studies.</p> <p>Results</p> <p>Fifteen SNPs in the <it>ADRB2 </it>gene were identified by resequencing and one SNP was novel. Ten tag SNPs were investigated further to assess association of <it>ADRB2 </it>in the case-control collection. Neither individual tag SNP nor haplotypes showed association with GD in Han Chinese population (P > 0.05). Our meta-analysis of the <it>ADRB2 </it>SNP rs1042714 measured heterogeneity between the ethnic groups (I<sup>2 </sup>= 53.1%) and no association to GD was observed in the overall three studies with a random effects model (OR = 1.13, 95% CI, 0.95 to 1.36; P = 0.18). However, significant association was found from the combined data of Caucasian population with a fixed effects model (OR = 1.18, 95% CI, 1.06 to 1.32; P = 0.002; I<sup>2 </sup>= 5.9%).</p> <p>Conclusion</p> <p>Our study indicated that the <it>ADRB2 </it>gene did not exert a substantial influence on GD susceptibility in Han Chinese population, but contributed to a detectable GD risk in Caucasian population. This inconsistency resulted largely from between-ethnicity heterogeneity.</p
Nuclear and Chloroplast Microsatellites Show Multiple Introductions in the Worldwide Invasion History of Common Ragweed, Ambrosia artemisiifolia
BACKGROUND: Ambrosia artemisiifolia is a North American native that has become one of the most problematic invasive plants in Europe and Asia. We studied its worldwide population genetic structure, using both nuclear and chloroplast microsatellite markers and an unprecedented large population sampling. Our goals were (i) to identify the sources of the invasive populations; (ii) to assess whether all invasive populations were founded by multiple introductions, as previously found in France; (iii) to examine how the introductions have affected the amount and structure of genetic variation in Europe; (iv) to document how the colonization of Europe proceeded; (v) to check whether populations exhibit significant heterozygote deficiencies, as previously observed. PRINCIPAL FINDINGS: We found evidence for multiple introductions of A. artemisiifolia, within regions but also within populations in most parts of its invasive range, leading to high levels of diversity. In Europe, introductions probably stem from two different regions of the native area: populations established in Central Europe appear to have originated from eastern North America, and Eastern European populations from more western North America. This may result from differential commercial exchanges between these geographic regions. Our results indicate that the expansion in Europe mostly occurred through long-distance dispersal, explaining the absence of isolation by distance and the weak influence of geography on the genetic structure in this area in contrast to the native range. Last, we detected significant heterozygote deficiencies in most populations. This may be explained by partial selfing, biparental inbreeding and/or a Wahlund effect and further investigation is warranted. CONCLUSIONS: This insight into the sources and pathways of common ragweed expansion may help to better understand its invasion success and provides baseline data for future studies on the evolutionary processes involved during range expansion in novel environments
Elevated AKR1C3 expression promotes prostate cancer cell survival and prostate cell-mediated endothelial cell tube formation: implications for prostate cancer progressioan
<p>Abstract</p> <p>Background</p> <p>Aldo-keto reductase (AKR) 1C family member 3 (AKR1C3), one of four identified human AKR1C enzymes, catalyzes steroid, prostaglandin, and xenobiotic metabolism. In the prostate, AKR1C3 is up-regulated in localized and advanced prostate adenocarcinoma, and is associated with prostate cancer (PCa) aggressiveness. Here we propose a novel pathological function of AKR1C3 in tumor angiogenesis and its potential role in promoting PCa progression.</p> <p>Methods</p> <p>To recapitulate elevated AKR1C3 expression in cancerous prostate, the human PCa PC-3 cell line was stably transfected with an AKR1C3 expression construct to establish PC3-AKR1C3 transfectants. Microarray and bioinformatics analysis were performed to identify AKR1C3-mediated pathways of activation and their potential biological consequences in PC-3 cells. Western blot analysis, reverse transcription-polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA), and an <it>in vitro </it>Matrigel angiogenesis assays were applied to validate the pro-angiogenic activity of PC3-AKR1C3 transfectants identified by bioinformatics analysis.</p> <p>Results</p> <p>Microarray and bioinformatics analysis suggested that overexpression of AKR1C3 in PC-3 cells modulates estrogen and androgen metabolism, activates insulin-like growth factor (IGF)-1 and Akt signaling pathways, as well as promotes tumor angiogenesis and aggressiveness. Levels of IGF-1 receptor (IGF-1R) and Akt activation as well as vascular endothelial growth factor (VEGF) expression and secretion were significantly elevated in PC3-AKR1C3 transfectants in comparison to PC3-mock transfectants. PC3-AKR1C3 transfectants also promoted endothelial cell (EC) tube formation on Matrigel as compared to the AKR1C3-negative parental PC-3 cells and PC3-mock transfectants. Pre-treatment of PC3-AKR1C3 transfectants with a selective IGF-1R kinase inhibitor (AG1024) or a non-selective phosphoinositide 3-kinases (PI3K) inhibitor (LY294002) abolished ability of the cells to promote EC tube formation.</p> <p>Conclusions</p> <p>Bioinformatics analysis followed by functional genomics demonstrated that AKR1C3 overexpression promotes angiogenesis and aggressiveness of PC-3 cells. These results also suggest that AKR1C3-mediated tumor angiogenesis is regulated by estrogen and androgen metabolism with subsequent IGF-1R and Akt activation followed by VEGF expression in PCa cells.</p
Anisotropic nanomaterials: structure, growth, assembly, and functions
Comprehensive knowledge over the shape of nanomaterials is a critical factor in designing devices with desired functions. Due to this reason, systematic efforts have been made to synthesize materials of diverse shape in the nanoscale regime. Anisotropic nanomaterials are a class of materials in which their properties are direction-dependent and more than one structural parameter is needed to describe them. Their unique and fine-tuned physical and chemical properties make them ideal candidates for devising new applications. In addition, the assembly of ordered one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) arrays of anisotropic nanoparticles brings novel properties into the resulting system, which would be entirely different from the properties of individual nanoparticles. This review presents an overview of current research in the area of anisotropic nanomaterials in general and noble metal nanoparticles in particular. We begin with an introduction to the advancements in this area followed by general aspects of the growth of anisotropic nanoparticles. Then we describe several important synthetic protocols for making anisotropic nanomaterials, followed by a summary of their assemblies, and conclude with major applications
Extrasolar enigmas: from disintegrating exoplanets to exoasteroids
Thousands of transiting exoplanets have been discovered to date, thanks in
great part to the {\em Kepler} space mission. As in all populations, and
certainly in the case of exoplanets, one finds unique objects with distinct
characteristics. Here we will describe the properties and behaviour of a small
group of `disintegrating' exoplanets discovered over the last few years (KIC
12557548b, K2-22b, and others). They evaporate, lose mass unraveling their
naked cores, produce spectacular dusty comet-like tails, and feature highly
variable asymmetric transits. Apart from these exoplanets, there is
observational evidence for even smaller `exo-'objects orbiting other stars:
exoasteroids and exocomets. Most probably, such objects are also behind the
mystery of Boyajian's star. Ongoing and upcoming space missions such as {\em
TESS} and PLATO will hopefully discover more objects of this kind, and a new
era of the exploration of small extrasolar systems bodies will be upon us.Comment: Accepted for publication in the book "Reviews in Frontiers of Modern
Astrophysics: From Space Debris to Cosmology" (eds Kabath, Jones and Skarka;
publisher Springer Nature) funded by the European Union Erasmus+ Strategic
Partnership grant "Per Aspera Ad Astra Simul" 2017-1-CZ01-KA203-03556
Identification and characterization of multiple osmotic response sequences in the human aldose reductase gene
Aldose reductase (AR) has been implicated in osmoregulation in the kidney because it reduces glucose to sorbitol, which can serve as an osmolite. Under hyperosmotic stress, transcription of this gene is induced to increase the enzyme level. This mode of osmotic regulation of AR gene expression has been observed in a number of nonrenal cells as well, suggesting that this is a common response to hyperosmotic stress. We have identified a 132-base pair sequence 1 kilobase pairs upstream of the transcription start site of the AR gene that enhances the transcription activity of the AR promoter as well as that of the SV40 promoter when the cells are under hyperosmotic stress. Within this 132-base pair sequence, there are three sequences that resemble TonE, the tonicity response element of the canine betaine transporter gene, and the osmotic response element of the rabbit AR gene, suggesting that the mechanism of osmotic regulation of gene expression in these animals is similar. However, our data indicate that cooperative interaction among the three TonE-like sequences in the human AR may be necessary for their enhancer function.published_or_final_versio
- …