28 research outputs found

    Beta-blocker migraine prophylaxis affects the excitability of the visual cortex as revealed by transcranial magnetic stimulation

    Get PDF
    The objective of this study is to assess effects of beta-blocker migraine prophylaxis on cortical excitability determined by transcranial magnetic stimulation (TMS). Phosphene and motor thresholds (PT, MT) were investigated in 29 patients with migraine, in 15 of them prior to and following preventive medication with metoprolol and in 14 patients without prophylaxis. Following prophylaxis headache frequency significantly decreased (p = 0.005) and mean PT were significantly increased (51.5 ± 7.5 vs. 63.6 ± 8.4%) compared to patients without preventive treatment (53.7 ± 5.3 vs. 52.3 ± 6.3%; p = 0.040). Mean MT did not significantly differ either between groups or due to treatment. In the group of all patients, a significant inverse correlation between headache frequency and the level of PT was found (R = −0.629; p < 0.01). There was, however, no significant correlation in the subgroups of patients. We conclude that (a) clinical efficacy of beta-blocker treatment in migraine could be (at least partly) linked to its ability to modulate the excitability of the visual cortex and (b) the PT determined by TMS appears suitable to assess the effects of prophylaxis on cortical excitability in the individual patient. This may be useful in clinical trials investigating migraine preventive drugs

    Altered processing of sensory stimuli in patients with migraine

    Get PDF
    Migraine is a cyclic disorder, in which functional and morphological brain changes fluctuate over time, culminating periodically in an attack. In the migrainous brain, temporal processing of external stimuli and sequential recruitment of neuronal networks are often dysfunctional. These changes reflect complex CNS dysfunction patterns. Assessment of multimodal evoked potentials and nociceptive reflex responses can reveal altered patterns of the brain's electrophysiological activity, thereby aiding our understanding of the pathophysiology of migraine. In this Review, we summarize the most important findings on temporal processing of evoked and reflex responses in migraine. Considering these data, we propose that thalamocortical dysrhythmia may be responsible for the altered synchronicity in migraine. To test this hypothesis in future research, electrophysiological recordings should be combined with neuroimaging studies so that the temporal patterns of sensory processing in patients with migraine can be correlated with the accompanying anatomical and functional changes

    Excitability of visual V1-V2 and motor cortices to single transcranial magnetic stimuli in migraine: a reappraisal using a figure-of-eight coil.

    Full text link
    We used transcranial magnetic stimulation (TMS) with a figure-of-eight coil to excite motor and visual V1-V2 cortices in patients suffering from migraine without (MO) (n = 24) or with aura (MA) (n = 13) and in healthy volunteers (HV) (n = 33). Patients who had a migraine attack within 3 days before or after the recordings were excluded. All females were recorded at mid-cycle. Single TMS pulses over the occipital cortex elicited phosphenes in 64% of HV, 63% of MO and 69% of MA patients. Compared with HV, the phosphene threshold was significantly increased in MO (P = 0.001) and in MA (P = 0.007), but there was no difference between the two groups of migraineurs. The motor threshold tended to be higher in both migraine groups than in HV, but the differences were not significant. In conclusion, this study shows that two-thirds (64.86%) of patients affected by either migraine type present an increased phosphene threshold in the interictal period, which suggests that their visual cortex is hypoexcitable

    Vagus nerve stimulation attenuates heat- and formalin-induced pain in rats

    Full text link
    The analgesic effect of vagus nerve stimulation (VNS) has not yet been demonstrated in animals with the devices used in the clinic. We studied in awake rats the effects of two VNS protocols on the hind paw hot water test and compared the results with those previously obtained in the oro-facial formalin test. A stringent duty cycle (20 s on/18 s off) increased heat pain tolerance in both hind paws (average 188%) after 2 h of stimulation. VNS with parameters used in epilepsy (30 s on/5 min off) decreased heat tolerance after 2 h, but produced a significant antinociceptive effect after days of stimulation. VNS may thus be useful in pain disorders, even with the less stringent protocol. (C) 2003 Published by Elsevier Ireland Ltd

    Effects of repetitive transcranial magnetic stimulation on visual evoked potentials in migraine.

    Full text link
    peer reviewedBetween attacks, migraine patients are characterized by potentiation instead of habituation of stimulation-evoked cortical responses. It is debated whether this is due to increased or decreased cortical excitability. We have studied the changes in visual cortex excitability by recording pattern-reversal visual evoked potentials (PR-VEP) after low- and high-frequency repetitive transcranial magnetic stimulation (rTMS), known respectively for their inhibitory and excitatory effect on the cortex. In 30 patients (20 migraine without, 10 with aura) and 24 healthy volunteers, rTMS of the occipital cortex was performed with a focal figure-of-eight magnetic coil (Magstim). Nine hundred pulses were delivered randomly at 1 or 10 Hz in two separate sessions. Stimulus intensity was set to the phosphene threshold or to 110% of the motor threshold if no phosphenes were elicited. Before and after rTMS, PR-VEP were averaged sequentially in six blocks of 100zztieresponses during uninterrupted 3.1 Hz stimulation. In healthy volunteers, PR-VEP amplitude was significantly decreased in the first block after 1 Hz rTMS and the habituation normally found in successive blocks after sustained stimulation was significantly attenuated. In migraine patients, 10 Hz rTMS was followed by a significant increase of first block PR-VEP amplitude and by a reversal to normal habituation of the potentiation (or dishabituation) characteristic of the disorder. This effect was similar in both forms of migraine and lasted for at least 9 min. There were no significant changes of PR-VEP amplitudes after 1 Hz rTMS in migraineurs and after 10 Hz rTMS in healthy volunteers, nor after sham stimulation. The recovery of a normal PR-VEP habituation pattern after high-frequency rTMS is probably due to activation of the visual cortex and the dishabituation in healthy volunteers to cortical inhibition. We conclude, therefore, that the deficient interictal PR-VEP habituation in migraine is due to a reduced, and not to an increased, pre-activation excitability level of the visual cortex
    corecore