41 research outputs found

    The State of Coral Reef Ecosystems of Southeast Florida

    Get PDF
    The northern extension of the Florida reef tract and a complex of limestone ridges run parallel to the subtropical Atlantic coastline of southeast Florida. Spanning 170 km from the northern border of Biscayne National Park (BNP) in Miami-Dade County to the St. Lucie Inlet in Martin County, the reefs and hardbottom areas in this region support a rich and diverse biological community (Figure 5.1). Nearshore reef habitats in southeast Florida include hardbottom areas, patch reefs and worm reefs (Phragmatopoma spp.) exhibiting abundant octocoral, macroalgae, stony coral and sponge assemblages. Offshore, coral reef associated biotic assemblages occur on linear Holocene Acropora palmata mid-shelf and shelf margin reefs that extend from Miami Dade County to Palm Beach County (Lighty, 1977; Figure 5.2). Anastasia Formation limestone ridges and terraces colonized by reef biota characterize the reefs from Palm Beach County to Martin County (Cooke and Mossom, 1929). The coastal region of southeast Florida is highly developed, containing one third of Florida’s population of 16 million people (U.S. Census Bureau, 2006). Many southeast Florida reefs are located just 1.5 km from this urbanized shoreline. Despite their unique position as the highest latitude reefs along the western Atlantic seaboard, the reefs of southeast Florida have only recently received limited scientific and resource management attention. Andrews et al. (2005) discussed the reefs of southeast Florida and the critical need to implement actions that fill resource knowledge gaps and address conservation and threats to reef health. This report further examines and updates the list of stressors imperiling the health of southeast Florida’s reefs, and presents information gained from new research, monitoring and management efforts to determine the extent and condition of reef resources in this distinctive region

    A Protein Inventory of Human Ribosome Biogenesis Reveals an Essential Function of Exportin 5 in 60S Subunit Export

    Get PDF
    A systematic search for human ribosome biogenesis factors shows conservation of many aspects of eukaryotic ribosome synthesis with the well-studied process in yeast and identifies an export route of 60S subunits that is specific for higher eukaryotes

    Spatial Patterns of Parrotfish Corallivory in the Caribbean: The Importance of Coral Taxa, Density and Size

    Get PDF
    The past few decades have seen an increase in the frequency and intensity of disturbance on coral reefs, resulting in shifts in size and composition of coral populations. These changes have lead to a renewed focus on processes that influence demographic rates in corals, such as corallivory. While previous research indicates selective corallivory among coral taxa, the importance of coral size and the density of coral colonies in influencing corallivory are unknown. We surveyed the size, taxonomy and number of bites by parrotfish per colony of corals and the abundance of three main corallivorous parrotfish (Sparisoma viride, Sparisoma aurofrenatum, Scarus vetula) at multiple spatial scales (reefs within islands: 1–100 km, and between islands: >100 km) within the Bahamas Archipelago. We used a linear mixed model to determine the influence of coral taxa, colony size, colony density, and parrotfish abundance on the intensity of corallivory (bites per m2 of coral tissue). While the effect of colony density was significant in determining the intensity of corallivory, we found no significant influence of colony size or parrotfish abundance (density, biomass or community structure). Parrotfish bites were most frequently observed on the dominant species of reef building corals (Montastraea annularis, Montastraea faveolata and Porites astreoides), yet our results indicate that when the confounding effects of colony density and size were removed, selective corallivory existed only for the less dominant Porites porites. As changes in disturbance regimes result in the decline of dominant frame-work building corals such as Montastraea spp., the projected success of P. porites on Caribbean reefs through high reproductive output, resistance to disease and rapid growth rates may be attenuated through selective corallivory by parrotfish

    Changing Patterns of Microhabitat Utilization by the Threespot Damselfish, Stegastes planifrons, on Caribbean Reefs

    Get PDF
    Background: The threespot damselfish, Stegastes planifrons (Cuvier), is important in mediating interactions among corals, algae, and herbivores on Caribbean coral reefs. The preferred microhabitat of S. planifrons is thickets of the branching staghorn coral Acropora cervicornis. Within the past few decades, mass mortality of A. cervicornis from white-band disease and other factors has rendered this coral a minor ecological component throughout most of its range. Methodology/Principal Findings: Survey data from Jamaica (heavily fished), Florida and the Bahamas (moderately fished), the Cayman Islands (lightly to moderately fished), and Belize (lightly fished) indicate that distributional patterns of S. planifrons are positively correlated with live coral cover and topographic complexity. Our results suggest that speciesspecific microhabitat preferences and the availability of topographically complex microhabitats are more important than the abundance of predatory fish as proximal controls on S. planifrons distribution and abundance. Conclusions/Significance: The loss of the primary microhabitat of S. planifrons—A. cervicornis—has forced a shift in the distribution and recruitment of these damselfish onto remaining high-structured corals, especially the Montastraea annulari

    Keyword: current developments in youth research

    Full text link

    No-Take Reserve Networks: Sustaining Fishery Populations and Marine Ecosystems

    No full text
    Improved management approaches are needed to reduce the rate at which humans are depleting exploited marine populations and degrading marine ecosystems. Networks of no-take marine reserves are promising management tools because of their potential to (1) protect coastal ecosystem structure and functioning, (2) benefit exploited populations and fisheries, (3) improve scientific understanding of marine ecosystems, and (4) provide enriched opportunities for non-extractive human activities. By protecting marine ecosystems and their populations, no-take reserve networks can reduce risk by providing important insurance for fishery managers against overexploitation of individual populations. Replicated reserves also foster strong scientific testing of fishery and conservation management strategies. Reserve networks will require social acceptance, adequate enforcement, and effective scientific evaluation to be successful. Processes for reserve establishment should accommodate adaptive management so boundaries and regulations can be modified to enhance performance. However, even well-designed reserve networks will require continued conservation efforts outside reserve boundaries to be effective. Establishing networks of no-take reserves is a process-oriented, precautionary management strategy that protects functional attributes of marine ecosystems. As an addition to fishery management practices and other conservation efforts, no-take reserve networks may improve the status of exploited populations while conserving marine resources for future generations

    Expression of Insulin-Like Growth Factor 2 Receptor in Corneal Keratocytes During Differentiation and in Response to Wound Healing

    No full text
    PURPOSE. Insulin-like growth factor 2 receptor (IGF2R) associates with ligands that influence wound healing outcomes. However, the expression pattern of IGF2R and its role in the cornea is unknown. METHODS. Human keratocytes were isolated from donor corneas. Fibroblasts (fibroblast growth factor 2 [FGF2]-treated) or myofibroblasts (TGF-b1-treated) were analyzed for IGF2R and a-smooth muscle actin (a-SMA) expression by Western blotting and immunolocalization. Mouse corneas were wounded in vivo and porcine corneas ex vivo. The IGF2R and a-SMA protein expression were visualized and quantified by immunohistochemistry. The IGF2R gene expression in human corneal fibroblasts was knocked-down with targeted lentiviral shRNA. RESULTS. The IGF2R is expressed in epithelial and stromal cells of normal human, mouse, and porcine corneas. The IGF2R increases (11.2 6 0.4-fold) in the epithelial and (11.7 6 0.9-fold) stromal layers of in vivo wounded mouse corneas. Double-staining with a-SMA-and IGF2R-specific antibodies reveals that IGF2R protein expression is increased in stromal myofibroblasts in the wounded cornea relative to keratocytes in the normal cornea (11.2 6 0.8-fold). Human primary stromal keratocytes incubated with FGF2 or TGF-b1 in vitro demonstrate increased expression (2.0 6 0.4-fold) of IGF2R in myofibroblasts relative to fibroblasts. Conversion of IGF2R shRNA-lentiviral particle transduced corneal fibroblasts to myofibroblasts reveals a dependence on IGF2R expression, as only 40% 6 10% of cells transduced converted to myofibroblasts compared to 86% 6 3% in control cells. CONCLUSIONS. The IGF2R protein expression is increased during corneal wound healing and IGF2R regulates human corneal fibroblast to myofibroblast differentiation

    Structural basis for recognition of phosphodiester-containing lysosomal enzymes by the cation-independent mannose 6-phosphate receptor

    No full text
    Mannose 6-phosphate (Man-6-P)-dependent trafficking is vital for normal development. The biogenesis of lysosomes, a major cellular site of protein, carbohydrate, and lipid catabolism, depends on the 300-kDa cation-independent Man-6-P receptor (CI-MPR) that transports newly synthesized acid hydrolases from the Golgi. The CI-MPR recognizes lysosomal enzymes bearing the Man-6-P modification, which arises by the addition of GlcNAc-1-phosphate to mannose residues and subsequent removal of GlcNAc by the uncovering enzyme (UCE). The CI-MPR also recognizes lysosomal enzymes that elude UCE maturation and instead display the Man-P-GlcNAc phosphodiester. This ability of the CI-MPR to target phosphodiester-containing enzymes ensures lysosomal delivery when UCE activity is deficient. The extracellular region of the CI-MPR is comprised of 15 repetitive domains and contains three distinct Man-6-P binding sites located in domains 3, 5, and 9, with only domain 5 exhibiting a marked preference for phosphodiester-containing lysosomal enzymes. To determine how the CI-MPR recognizes phosphodiesters, the structure of domain 5 was determined by NMR spectroscopy. Although domain 5 contains only three of the four disulfide bonds found in the other seven domains whose structures have been determined to date, it adopts the same fold consisting of a flattened β-barrel. Structure determination of domain 5 bound to N-acetylglucosaminyl 6-phosphomethylmannoside, along with mutagenesis studies, revealed the residues involved in diester recognition, including Y679. These results show the mechanism by which the CI-MPR recognizes Man-P-GlcNAc-containing ligands and provides new avenues to investigate the role of phosphodiester-containing lysosomal enzymes in the biogenesis of lysosomes
    corecore