48 research outputs found

    Proteomic mapping of atrial and ventricular heart tissue in patients with aortic valve stenosis

    Get PDF
    Aortic valve stenosis (AVS) is one of the most common valve diseases in the world. However, detailed biological understanding of the myocardial changes in AVS hearts on the proteome level is still lacking. Proteomic studies using high-resolution mass spectrometry of formalin-fixed and paraffin-embedded (FFPE) human myocardial tissue of AVS-patients are very rare due to methodical issues. To overcome these issues this study used high resolution mass spectrometry in combination with a stem cell- derived cardiac specific protein quantification-standard to profile the proteomes of 17 atrial and 29 left ventricular myocardial FFPE human myocardial tissue samples from AVS-patients. In our proteomic analysis we quantified a median of 1980 (range 1495–2281) proteins in every single sample and identified significant upregulation of 239 proteins in atrial and 54 proteins in ventricular myocardium. We compared the proteins with published data. Well studied proteins reflect disease-related changes in AVS, such as cardiac hypertrophy, development of fibrosis, impairment of mitochondria and downregulated blood supply. In summary, we provide both a workflow for quantitative proteomics of human FFPE heart tissue and a comprehensive proteomic resource for AVS induced changes in the human myocardium

    Hoxa9 and Meis1 Cooperatively Induce Addiction to Syk Signaling by Suppressing miR-146a in Acute Myeloid Leukemia

    Get PDF
    The transcription factor Meis1 drives myeloid leukemogenesis in the context of Hox gene overexpression but is currently considered undruggable. We therefore investigated whether myeloid progenitor cells transformed by Hoxa9 and Meis1 become addicted to targetable signaling pathways. A comprehensive (phospho)proteomic analysis revealed that Meis1 increased Syk protein expression and activity. Syk upregulation occurs through a Meis1-dependent feedback loop. By dissecting this loop, we show that Syk is a direct target of miR-146a, whose expression is indirectly regulated by Meis1 through the transcription factor PU.1. In the context of Hoxa9 overexpression, Syk signaling induces Meis1, recapitulating several leukemogenic features of Hoxa9/Meis1-driven leukemia. Finally, Syk inhibition disrupts the identified regulatory loop, prolonging survival of mice with Hoxa9/Meis1-driven leukemia..O. and T. Berg (BE 4198/1-1 and BE 4198/2-1) are supported by the Deutsche Forschungsgemeinschaft (DFG). K.S. is supported by a Leukemia and Lymphoma Society Scholar Award and by the National Cancer Institute (R01 CA140292). F.C. is supported by an EMBO long-term fellowship (1305-2015 and Marie Curie ActionsLTFCOFUND2013/GA-2013-609409). F.K. was supported by grants from Deutsche Krebshilfe (grant 109420; Max-Eder program), fellowship 2010/04 by the European Hematology Association, and by the DFG (SFB 1074, project A5). A.R. was supported by the DFG (SFB 1074, project A5) and the gender equality program by the DFG (SFB 1074, project Z2), a fellowship from the Canadian Institutes of Health Research, and the Baustein Startförderung Program of the Medical Faculty, Ulm University. Work in the Department of Haematology in Cambridge is supported by Bloodwise (grant ref. 13003), the Wellcome Trust (grant ref. 104710/Z/14/Z), the Medical Research Council (MC_PC_12009), the Kay Kendall Leukemia Fund (KKL952), the Cambridge NIHR Biomedical Research Center (NF-BR-0412-10321), the Cambridge Experimental Cancer Medicine Centre itself receives funding from NIHR (NF-EC-0412-10442), the Leukemia and Lymphoma Society of America (grant ref. 07037), and core support grants from the Wellcome Trust (100140/Z/12/Z and 097922/Z/11/Z) and MRC (MC_PC_12009)

    Glucocorticoid resistance of allogeneic T cells alters the gene expression profile in the inflamed small intestine of mice suffering from acute graft-versus-host disease

    No full text
    Glucocorticoids (GCs) play an important role in controlling acute graft-versus-host disease (aGvHD), a frequent complication of allogeneic hematopoietic stem cell transplantation. The anti-inflammatory activity of GCs is mainly ascribed to the modulation of T cells and macrophages, for which reason a genetically induced GC resistance of either of these cell types causes aggravated aGvHD. Since only a few genes are currently known that are differentially regulated under these conditions, we analyzed the expression of 54 candidate genes in the inflamed small intestine of mice suffering from aGvHD when either allogeneic T cells or host myeloid cells were GC resistant using a microfluidic dynamic array platform for high-throughput quantitative PCR. The majority of genes categorized as cytokines (e.g. Il2, Il6), chemokines (e.g. Ccl2, Cxcl1), cell surface receptors (e.g. Fasl, Ctla4) and intracellular molecules (e.g. Dusp1, Arg1) were upregulated in mice transplanted with GC resistant allogeneic T cells. Moreover, the expression of several genes linked to energy metabolism (e.g. Glut1) was altered. Surprisingly, mice harboring GC resistant myeloid cells showed almost no changes in gene expression despite their fatal disease course after aGvHD induction. To identify additional genes in the inflamed small intestine that were affected by a GC resistance of allogeneic T cells, we performed an RNAseq analysis, which uncovered more than 500 differentially expressed transcripts (e.g. Cxcr6, Glut3, Otc, Aoc1, Il1r1, Sphk1) that were enriched for biological processes associated with inflammation and tissue disassembly. The changes in gene expression could be confirmed during full-blown disease but hardly any of them in the preclinical phase using high-throughput quantitative PCR. Further analysis of some of these genes revealed a highly selective expression pattern in T cells, intestinal epithelial cells and macrophages, which correlated with their regulation during disease progression. Collectively, we identified an altered gene expression profile caused by GC resistance of transplanted allogeneic T cells, which could help to define new targets for aGvHD therapy

    Deep phenotyping of human induced pluripotent stem cell-derived atrial and ventricular cardiomyocytes.

    No full text
    Generation of homogeneous populations of subtype-specific cardiomyocytes (CMs) derived from human induced pluripotent stem cells (iPSCs) and their comprehensive phenotyping is crucial for a better understanding of the subtype-related disease mechanisms and as tools for the development of chamber-specific drugs. The goals of this study were to apply a simple and efficient method for differentiation of iPSCs into defined functional CM subtypes in feeder-free conditions and to obtain a comprehensive understanding of the molecular, cell biological, and functional properties of atrial and ventricular iPSC-CMs on both the single-cell and engineered heart muscle (EHM) level. By a stage-specific activation of retinoic acid signaling in monolayer-based and well-defined culture, we showed that cardiac progenitors can be directed towards a highly homogeneous population of atrial CMs. By combining the transcriptome and proteome profiling of the iPSC-CM subtypes with functional characterizations via optical action potential and calcium imaging, and with contractile analyses in EHM, we demonstrated that atrial and ventricular iPSC-CMs and -EHM highly correspond to the atrial and ventricular heart muscle, respectively. This study provides a comprehensive understanding of the molecular and functional identities characteristic of atrial and ventricular iPSC-CMs and -EHM and supports their suitability in disease modeling and chamber-specific drug screening

    HSP90 promotes Burkitt lymphoma cell survival by maintaining tonic B cell receptor signaling.

    No full text
    Burkitt lymphoma (BL) is an aggressive B cell neoplasm that is currently treated by intensive chemotherapy in combination with anti-CD20 antibodies. Due to their toxicity, current treatment regimens are often not suitable for elderly patients or for patients in developing countries where BL is endemic. Targeted therapies for BL are therefore needed. In this study, we performed a compound screen in 17 BL cell lines to identify small molecule inhibitors affecting cell survival. We found that inhibitors of heat shock protein 90 (HSP90) induced apoptosis in BL cells in vitro at concentrations that did not affect normal B cells. By global proteomic and phosphoproteomic profiling we show that in BL, HSP90 inhibition compromises the activity of the pivotal B cell antigen receptor (BCR)-proximal effector spleen tyrosine kinase (SYK), which we identified as an HSP90 client protein. Consistently, expression of constitutively active TEL-SYK counteracted the apoptotic effect of HSP90 inhibition. Together, our results demonstrate that HSP90 inhibition impairs BL cell survival by interfering with tonic BCR signaling, thus providing a molecular rationale for the use of HSP90 inhibitors in the treatment of BL
    corecore