234 research outputs found

    Pleniglacial eolian or periglacial landforms in the Groote Peel

    Get PDF

    Late-Glacial and Holocene evolution of the Meuse valley

    Get PDF

    Excursion guide to the Fluvial Archives Group (FLAG) meeting

    Get PDF

    Mammal fauna during the Late Pleistocene and Holocene in the far northeast of Europe

    Get PDF
    The paper summarises materials on the mammal remains in northeastern Europe, dated by radiocarbon. Altogether, 23 local faunas of small mammals and 47 local faunas of large mammals were analysed. Multidimensional statistical analysis shows a strong correlation between changes in small mammal fauna composition and climate changes throughout time. The correlations with the spatial gradients, however, are less pronounced. The faunas are classified into three groups: (1) faunas of Holocene age; (2) Late Pleistocene ā€˜stadialā€™ assemblages; and (3) Late Pleistocene ā€˜interstadialā€™ assemblages. In some cases, changes in species abundance are better understood in terms of biotic interrelations rather than of climatic effects. The most pronounced change in small mammal fauna composition and structure occurred at the Preboreal/Boreal boundary, and a less conspicuous alteration took place at the LGM/Lateglacial transition. The most noticeable transformation in the large mammal fauna composition is dated to the early Holocene. Less significant changes are observed at the Middle Weichselian/LGM transition and at the LGM/Lateglacial transition. It is safely concluded that variations in the faunas of small and large mammals recorded in NE Europe during the last 35 000 years occurred synchronously and unidirectionally.

    Intraregional variability in chironomid-inferred temperature estimates and the influence of river inundations on lacustrine chironomid assemblages.

    Get PDF
    Floodplain lakes are rarely analysed for fossil chironomids and usually not incorporated in modern chironomid-climate calibration datasets because of the potential complex hydrological processes that could result from flooding of the lakes. In order to investigate this potential influence of river inundations on fossil chironomid assemblages, 13 regularly inundated lakes and 20 lakes isolated from riverine influence were sampled and their surface sediments analysed for subfossil chironomid assemblages. The physical and chemical settings of all lakes were similar, although the variation in the environmental variables was higher in the lakes isolated from riverine influence. Chironomid concentration and taxon richness show significant differences between the two classes of lakes, and the variation in these variables is best explained by loss-on-ignition of the sediments (LOI). Relative chironomid abundances show some differences between the two groups of lakes, with several chironomid taxa occurring preferentially in one of the two lake-types. The variability in chironomid assemblages is also best explained by LOI. Application of a chironomid-temperature inference model shows that both types of lakes reconstruct July air temperatures that are equal to, or slightly underestimating, the measured temperature of the region. We conclude that, although there are some differences between the chironomid assemblages of floodplain lakes and of isolated lakes, these differences do not have a major effect on chironomid-based temperature reconstruction. Ā© 2007 Springer Science+Business Media B.V
    • ā€¦
    corecore