4,262 research outputs found
Effect of flow on the acoustic reflection coefficient at a duct inlet
The effect of duct Mach number upon the acoustic reflection coefficient at the inlet of a duct with mean
flow is investigated. An analysis, which models the duct inlet as a very short, one-dimensional nozzle over
which the mean flow is accelerated from rest, gives good agreement with some recent experimental results.
Discrepancies between the analysis and the experimental results are discussed in terms of radiation losses at
the inlet and real fluid-flow effects within the duct
A Simple Quantum Model of Ultracold Polar Molecule Collisions
We present a unified formalism for describing chemical reaction rates of
trapped, ultracold molecules. This formalism reduces the scattering to its
essential features, namely, a propagation of the reactant molecules through a
gauntlet of long-range forces before they ultimately encounter one another,
followed by a probability for the reaction to occur once they do. In this way,
the electric-field dependence should be readily parametrized in terms of a pair
of fitting parameters (along with a coefficient) for each asymptotic
value of partial wave quantum numbers . From this, the electric
field dependence of the collision rates follows automatically. We present
examples for reactive species such as KRb, and non-reactive species, such as
RbCs
Benefits and barriers of construction project monitoring using hi-resolution automated cameras
A more rapid and widespread use and implementation of technology in construction often fails since its benefits and limitations remain somewhat unclear. Project control is one of the most variable and time consuming task of construction project managers and superintendents, and yet continues to be mostly a manual task. Controlling tasks such as tracking and updating project schedules can be assisted through remotely operating technology such as hi-resolution cameras that can provide construction management and other users with imaging feeds of job site activities. Although construction cameras have been around for many years the costs, benefits, and barriers of their use have not been investigated nor quantified in detail. Subsequently, definitions and understanding vary widely, making it difficult for decision makers at the organizational level to decide on the investment in camera technology. This thesis reviews the status of hi-resolution cameras and their present use in construction. Results of a multi-phased survey to industry professionals were collected in order to identify benefits and barriers and develop a cost-benefit model that can be used for implementation technology in construction.M.S.Committee Chair: Jochen Teizer; Committee Member: Ioannis Brilakis; Committee Member: Michael Meye
Fully Integrated Frequency and Phase Generation for a 6-18GHz Tunable Multi-Band Phased-Array Receiver in CMOS
Fully integrated frequency-phase generators
for a 6-18GHz wide-band phased-array receiver element are
presented that generate 5-7GHz and 9-12GHz first LO
signals with less than -95dBc/Hz phase noise at 100kHz
offset. Second LO signals with digitally controllable fourquadrant phase- and amplitude spread with better than 3°
resolution are generated and allow removal of systematic
reference clock skew as well as accurate selection of the
received signal phase. This frequency- and phase generation
scheme was successfully demonstrated in a 6-18GHz receiver
system configured as an electrical 4-element array
p-wave Feshbach molecules
We have produced and detected molecules using a p-wave Feshbach resonance
between 40K atoms. We have measured the binding energy and lifetime for these
molecules and we find that the binding energy scales approximately linearly
with magnetic field near the resonance. The lifetime of bound p-wave molecules
is measured to be 1.0 +/- 0.1 ms and 2.3 +/- 0.2 ms for the m_l = +/- 1 and m_l
= 0 angular momentum projections, respectively. At magnetic fields above the
resonance, we detect quasi-bound molecules whose lifetime is set by the
tunneling rate through the centrifugal barrier
Dipolar Bose gases: Many-body versus mean-field description
We characterize zero-temperature dipolar Bose gases under external spherical
confinement as a function of the dipole strength using the essentially exact
many-body diffusion Monte Carlo (DMC) technique. We show that the DMC energies
are reproduced accurately within a mean-field framework if the variation of the
s-wave scattering length with the dipole strength is accounted for properly.
Our calculations suggest stability diagrams and collapse mechanisms of dipolar
Bose gases that differ significantly from those previously proposed in the
literature
Mol. Cell. Proteomics
Chemical cross-linking in combination with mass spectrometric analysis offers the potential to obtain low-resolution structural information from proteins and protein complexes. Identification of peptides connected by a cross-link provides direct evidence for the physical interaction of amino acid side chains, information that can be used for computational modeling purposes. Despite impressive advances that were made in recent years, the number of experimentally observed cross-links still falls below the number of possible contacts of cross-linkable side chains within the span of the cross-linker. Here, we propose two complementary experimental strategies to expand cross-linking data sets. First, enrichment of cross-linked peptides by size exclusion chromatography selects cross-linked peptides based on their higher molecular mass, thereby depleting the majority of unmodified peptides present in proteolytic digests of cross-linked samples. Second, we demonstrate that the use of proteases in addition to trypsin, such as Asp-N, can additionally boost the number of observable cross-linking sites. The benefits of both SEC enrichment and multiprotease digests are demonstrated on a set of model proteins and the improved workflow is applied to the characterization of the 20S proteasome from rabbit and Schizosaccharomyces pombe
Observation of Heteronuclear Feshbach Resonances in a Bose-Fermi Mixture
Three magnetic-field induced heteronuclear Feshbach resonances were
identified in collisions between bosonic 87Rb and fermionic 40K atoms in their
absolute ground states. Strong inelastic loss from an optically trapped mixture
was observed at the resonance positions of 492, 512, and 543 +/- 2 G. The
magnetic-field locations of these resonances place a tight constraint on the
triplet and singlet cross-species scattering lengths, yielding -281 +/- 15 Bohr
and -54 +/- 12 Bohr, respectively. The width of the loss feature at 543 G is
3.7 +/- 1.5 G wide; this broad Feshbach resonance should enable experimental
control of the interspecies interactions.Comment: revtex4 + 5 EPS figure
- …