175 research outputs found

    Label Calibration for Semantic Segmentation Under Domain Shift

    Full text link
    Performance of a pre-trained semantic segmentation model is likely to substantially decrease on data from a new domain. We show a pre-trained model can be adapted to unlabelled target domain data by calculating soft-label prototypes under the domain shift and making predictions according to the prototype closest to the vector with predicted class probabilities. The proposed adaptation procedure is fast, comes almost for free in terms of computational resources and leads to considerable performance improvements. We demonstrate the benefits of such label calibration on the highly-practical synthetic-to-real semantic segmentation problem.Comment: ICLR 2023 Workshop on Pitfalls of Limited Data and Computation for Trustworthy M

    Feed-Forward Source-Free Domain Adaptation via Class Prototypes

    Full text link
    Source-free domain adaptation has become popular because of its practical usefulness and no need to access source data. However, the adaptation process still takes a considerable amount of time and is predominantly based on optimization that relies on back-propagation. In this work we present a simple feed-forward approach that challenges the need for back-propagation based adaptation. Our approach is based on computing prototypes of classes under the domain shift using a pre-trained model. It achieves strong improvements in accuracy compared to the pre-trained model and requires only a small fraction of time of existing domain adaptation methods.Comment: ECCV 2022 Workshop on Out of Distribution Generalization in Computer Vision (OOD-CV

    EvoGrad: Efficient Gradient-Based Meta-Learning and Hyperparameter Optimization

    Get PDF
    Gradient-based meta-learning and hyperparameter optimization have seen significant progress recently, enabling practical end-to-end training of neural networks together with many hyperparameters. Nevertheless, existing approaches are relatively expensive as they need to compute second-order derivatives and store a longer computational graph. This cost prevents scaling them to larger network architectures. We present EvoGrad, a new approach to meta-learning that draws upon evolutionary techniques to more efficiently compute hypergradients. EvoGrad estimates hypergradient with respect to hyperparameters without calculating second-order gradients, or storing a longer computational graph, leading to significant improvements in efficiency. We evaluate EvoGrad on three substantial recent meta-learning applications, namely cross-domain few-shot learning with feature-wise transformations, noisy label learning with Meta-Weight-Net and low-resource cross-lingual learning with meta representation transformation. The results show that EvoGrad significantly improves efficiency and enables scaling meta-learning to bigger architectures such as from ResNet10 to ResNet34.Comment: Accepted at NeurIPS 202

    Monster

    Get PDF
    451 Manning Avenue, home to an architect and an artist, has generated an adverse reaction within its community. The property is maintained as a testament to the Rao family history in Canada, but most visibly, Villa Rao stands in advocacy of diversity within our built environment. The recently proposed addition is a monstrosity by one hundred and twenty accounts

    Meta-learning algorithms and applications

    Get PDF
    Meta-learning in the broader context concerns how an agent learns about their own learning, allowing them to improve their learning process. Learning how to learn is not only beneficial for humans, but it has also shown vast benefits for improving how machines learn. In the context of machine learning, meta-learning enables models to improve their learning process by selecting suitable meta-parameters that influence the learning. For deep learning specifically, the meta-parameters typically describe details of the training of the model but can also include description of the model itself - the architecture. Meta-learning is usually done with specific goals in mind, for example trying to improve ability to generalize or learn new concepts from only a few examples. Meta-learning can be powerful, but it comes with a key downside: it is often computationally costly. If the costs would be alleviated, meta-learning could be more accessible to developers of new artificial intelligence models, allowing them to achieve greater goals or save resources. As a result, one key focus of our research is on significantly improving the efficiency of meta-learning. We develop two approaches: EvoGrad and PASHA, both of which significantly improve meta-learning efficiency in two common scenarios. EvoGrad allows us to efficiently optimize the value of a large number of differentiable meta-parameters, while PASHA enables us to efficiently optimize any type of meta-parameters but fewer in number. Meta-learning is a tool that can be applied to solve various problems. Most commonly it is applied for learning new concepts from only a small number of examples (few-shot learning), but other applications exist too. To showcase the practical impact that meta-learning can make in the context of neural networks, we use meta-learning as a novel solution for two selected problems: more accurate uncertainty quantification (calibration) and general-purpose few-shot learning. Both are practically important problems and using meta-learning approaches we can obtain better solutions than the ones obtained using existing approaches. Calibration is important for safety-critical applications of neural networks, while general-purpose few-shot learning tests model's ability to generalize few-shot learning abilities across diverse tasks such as recognition, segmentation and keypoint estimation. More efficient algorithms as well as novel applications enable the field of meta-learning to make more significant impact on the broader area of deep learning and potentially solve problems that were too challenging before. Ultimately both of them allow us to better utilize the opportunities that artificial intelligence presents

    Feed-Forward Latent Domain Adaptation

    Get PDF
    We study a new highly-practical problem setting that enables resource-constrained edge devices to adapt a pretrained model to their local data distributions. Recognizing that device’s data are likely to come from multiple latent domains that include a mixture of unlabelled domain-relevant and domain-irrelevant examples, we focus on the comparatively under-studied problem of latent domain adaptation. Considering limitations of edge devices, we aim to only use a pre-trained model and adapt it in a feed-forward way, without using back-propagation and without access to the source data. Modelling these realistic constraints bring us to the novel and practically important problem setting of feedforward latent domain adaptation. Our solution is to metalearn a network capable of embedding the mixed-relevance target dataset and dynamically adapting inference for target examples using cross-attention. The resulting framework leads to consistent improvements over strong ERM baselines. We also show that our framework sometimes even improves on the upper bound of domain-supervised adaptation, where only domain-relevant instances are provided for adaptation. This suggests that human annotated domain labels may not always be optimal, and raises the possibility of doing better through automated instance selection

    Feed-Forward Source-Free Latent Domain Adaptation via Cross-Attention

    Full text link
    We study the highly practical but comparatively under-studied problem of latent-domain adaptation, where a source model should be adapted to a target dataset that contains a mixture of unlabelled domain-relevant and domain-irrelevant examples. Furthermore, motivated by the requirements for data privacy and the need for embedded and resource-constrained devices of all kinds to adapt to local data distributions, we focus on the setting of feed-forward source-free domain adaptation, where adaptation should not require access to the source dataset, and also be back propagation-free. Our solution is to meta-learn a network capable of embedding the mixed-relevance target dataset and dynamically adapting inference for target examples using cross-attention. The resulting framework leads to consistent improvement on strong ERM baselines. We also show that our framework sometimes even improves on the upper bound of domain-supervised adaptation, where only domain-relevant instances are provided for adaptation. This suggests that human annotated domain labels may not always be optimal, and raises the possibility of doing better through automated instance selection.Comment: Shorter version accepted at the First Workshop of Pre-training: Perspectives, Pitfalls, and Paths Forward at ICML 202

    Fairness in AI and Its Long-Term Implications on Society

    Get PDF
    Successful deployment of artificial intelligence (AI) in various settings has led to numerous positive outcomes for individuals and society. However, AI systems have also been shown to harm parts of the population due to biased predictions. We take a closer look at AI fairness and analyse how lack of AI fairness can lead to deepening of biases over time and act as a social stressor. If the issues persist, it could have undesirable long-term implications on society, reinforced by interactions with other risks. We examine current strategies for improving AI fairness, assess their limitations in terms of real-world deployment, and explore potential paths forward to ensure we reap AI's benefits without harming significant parts of the society
    • …
    corecore