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Abstract
Meta-learning in the broader context concerns how an agent learns about their own

learning, allowing them to improve their learning process. Learning how to learn is

not only beneficial for humans, but it has also shown vast benefits for improving how

machines learn. In the context of machine learning, meta-learning enables models to

improve their learning process by selecting suitable meta-parameters that influence the

learning. For deep learning specifically, the meta-parameters typically describe details

of the training of the model but can also include description of the model itself – the

architecture. Meta-learning is usually done with specific goals in mind, for example

trying to improve ability to generalize or learn new concepts from only a few examples.

Meta-learning can be powerful, but it comes with a key downside: it is often

computationally costly. If the costs would be alleviated, meta-learning could be more

accessible to developers of new artificial intelligence models, allowing them to achieve

greater goals or save resources. As a result, one key focus of our research is on

significantly improving the efficiency of meta-learning. We develop two approaches:

EvoGrad and PASHA, both of which significantly improve meta-learning efficiency

in two common scenarios. EvoGrad allows us to efficiently optimize the value of a

large number of differentiable meta-parameters, while PASHA enables us to efficiently

optimize any type of meta-parameters but fewer in number.

Meta-learning is a tool that can be applied to solve various problems. Most com-

monly it is applied for learning new concepts from only a small number of examples

(few-shot learning), but other applications exist too. To showcase the practical impact

that meta-learning can make in the context of neural networks, we use meta-learning as

a novel solution for two selected problems: more accurate uncertainty quantification

(calibration) and general-purpose few-shot learning. Both are practically important

problems and using meta-learning approaches we can obtain better solutions than the

ones obtained using existing approaches. Calibration is important for safety-critical

applications of neural networks, while general-purpose few-shot learning tests model’s

ability to generalize few-shot learning abilities across diverse tasks such as recognition,

segmentation and keypoint estimation.

More efficient algorithms as well as novel applications enable the field of meta-

learning to make more significant impact on the broader area of deep learning and

potentially solve problems that were too challenging before. Ultimately both of them

allow us to better utilize the opportunities that artificial intelligence presents.
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Lay Summary
In machine learning we use data to teach machines how to solve given tasks, for

example recognizing objects in images or translating texts to other languages. Such

approach can be contrasted with programming, where we explicitly specify what actions

the machine should perform. A very popular and successful approach for machine

learning utilizes the concept of neural networks. Neural networks can be understood

as a series of mathematical operations that are applied in a sequence to the input data.

These operations depend on parameters, also known as weights, that need to be chosen

appropriately. Selecting them is not trivial, so mathematical techniques have been

developed for finding suitable values. Initially random values are used and then they are

iteratively updated based on how well they perform on data – also known as training.

The values are updated in the direction that minimizes the amount of mistakes made.

How the training is performed depends on various choices and can be summarized as

a set of parameters. These are typically known as hyperparameters or meta-parameters,

and could be chosen manually by trial and error or based on intuition. However,

selecting them in a more principled way is likely to lead to significantly better results,

especially if there are many of them. The task of automatically selecting or learning the

values of these parameters is known as meta-learning and is the topic of our thesis.

A key challenge with meta-learning is that it is often computationally costly. Hence

one focus of our thesis is on improving the computational efficiency of meta-learning.

We develop two methods that significantly decrease the computational costs in two

common scenarios and make meta-learning more scalable and accessible.

Meta-learning is a general-purpose technique that can improve performance in many

applications. To showcase the impact that meta-learning can make, another focus of

our thesis is on using meta-learning as a new solution to selected problems related to

machine learning. We present two new use-cases. The first use-case is about trying to

obtain a more accurate quantification of uncertainty, which is important in safety-critical

applications as we should not rely on predictions that have a large uncertainty. The

second use-case concerns learning new concepts from a small number of examples,

which is typically challenging for neural networks but very useful in practice. Compared

to earlier work, we extend these data-efficient learning abilities to situations where one

neural network can adapt to diverse computer vision tasks.
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Chapter 1

Introduction

1.1 Motivation

One of the intriguing human abilities is the ability to learn how to improve one’s

learning process. Such higher-level learning can occur on the conscious level but also

on the subconscious level. On the conscious level, humans can reflect on how they have

learned to solve given problems or tasks and develop strategies that can help them solve

new problems more quickly and more successfully. This occurs in various settings,

including in education (Biggs, 1985) and can include students preparing for exams in a

new subject, by making use of strategies that help them succeed. For example, their

strategy could include first writing short summaries of lectures from the given subject

and then solving many similar exams from the previous years.

On the subconscious level the strategies can be more subtle as in such case there is no

formal reasoning that takes place to improve the learning process. However, it has been

demonstrated that this form of learning also occurs in humans. Such learning allows us

to learn to solve new tasks more quickly and more accurately after we have been solving

similar tasks earlier (Harlow, 1949). Neuroscientists have studied this phenomenon

in more depth and identified that prefrontal cortex can act as a meta-reinforcement

learning system (Wang et al., 2018a). In fact, the described meta-learning is not only

limited to humans, but also happens in other living organisms, for example monkeys

(Harlow, 1949) and mice (Zhao et al., 2023b). It has been therefore observed that both

humans and animals are able to learn how to learn, suggesting they are able to improve

their own learning processes. The improvements in learning can result in being able

to learn to solve related tasks more quickly, but they can also take the form of finding

better and more creative solutions to the tasks considered.

1



Chapter 1. Introduction 2

Biological meta-learning also takes place across evolutionary time-scales, in addition

to individual lifetimes. Humans and animals benefit from learning how to adapt and

improve themselves, and those that learn to do it better have a better chance of survival.

This relates to the broader learning that takes place across generations and is reflected

within the genome of the species. More specifically it occurs as part of the Baldwin

effect that means organisms with a better ability to learn new behaviours are more

successful in reproduction, hence more likely to pass their genes to future generations

(Baldwin, 1896). The improvements to the genome that take place via evolution can be

seen as a form of meta-learning, although on a yet higher level than discussed earlier.

Meta-learning is prevalent in the nature and brings important benefits for living

organisms (Wang, 2021), which suggests these abilities could be highly valuable also

for machines. Machines that can learn how to improve their learning process could

therefore benefit tremendously and improve their chances of success for the tasks to

which they are deployed.

Meta-learning and automated ML (AutoML) (Yao et al., 2018; Hutter et al., 2019)

more broadly have the potential to transform how we do deep learning. They could

automatically find suitable solutions to how we train deep learning models for the given

problem rather than having to define the details manually (Hospedales et al., 2021).

The mentioned paradigm shift is related to the advent of deep learning in areas such

as computer vision (CV) or natural language processing (NLP), where learned feature

extractors replaced and later significantly outperformed manually designed feature

extractors (Krizhevsky et al., 2012; He et al., 2016; Devlin et al., 2019). We illustrate

the increasing levels of automation in Figure 1.1, starting with machine learning,

continuing with deep learning and then meta-learning. In this sense meta-learning has

the ability to unlock the next wave of progress in deep learning, machine learning or

artificial intelligence more broadly. Furthermore, meta-learning has even been seen as a

key component towards achieving artificial general intelligence (AGI) (Clune, 2019).

The possibility of neural networks being able to automatically improve themselves

has fascinated researchers for a long time (Schmidhuber, 1987; Naik and Mammone,

1992; Bengio et al., 1997; Pratt, 1997). However, it is only relatively recently that

the field of meta-learning has attracted significant attention (Hospedales et al., 2021).

The resurgence of interest has started when meta-learning approaches were applied

with great success to the challenging problem of few-shot learning (Wang et al., 2020).

Few-shot learning refers to learning new concepts from only a very small number of

examples, which is considered particularly challenging for neural networks as they are
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Machine learning

Deep learning

Meta-learning

ClassificationFeature 
extraction

Algorithm 
design

LabelImage

Figure 1.1: Comparison of the level of automation in machine learning, deep learning

and meta-learning. Deep learning has improved upon standard machine learning by

automatically learning how to extract features, which was previously done manually.

Meta-learning (or AutoML more broadly) iterates on this further by also automating to a

significant extent the algorithm design that guides training of deep-learning models.

widely believed to require large amounts of data for learning new concepts (Marcus,

2018). The ability to learn new concepts from only a small amount of data would be

highly desirable and is also something that humans can do easily (Brown and Kane,

1988; Lake et al., 2015).

The seminal meta-learning approach that has achieved remarkable performance

on the few-shot learning problem is called Model-Agnostic Meta-Learning (MAML)

(Finn et al., 2017). We briefly discuss it as part of the introduction to provide an initial

overview of how meta-learning methods operate. MAML is intuitive and elegant, and

includes meta-training across a large number of learning tasks, also known as episodes.

Such episodic meta-learning has been widely used also in many other later works,

including (Snell et al., 2017; Sung et al., 2018; Lee et al., 2019). The learning consists

of an inner and outer loop. The inner loop is about learning the model parameters that

can solve the given task. The outer loop is about meta-learning meta-parameters that

enable us to successfully learn across tasks. The described process can be seen as a form

of fast learning on the current task and slow learning that takes place across tasks. In
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Inner loop Outer loop

Image Model Label

LossLearning
algorithm

Meta-learning
algorithm

Meta-loss

Figure 1.2: Illustration of how meta-learning operates as part of the outer loop wrapped

around conventional learning done within the inner loop. The outer loop takes the inner

loop training as input, evaluates it on novel data and updates the meta-parameters that

influence the training in the inner loop.

the case of MAML, it is the initialization of the neural network that is meta-learned and

reused across the different learning episodes. Both inner and outer loop are gradient-

based in MAML, so meta-learning is achieved by backpropagating through the learning

process. We illustrate the inner and outer loop in Figure 1.2.

Few-shot learning is closely related to in-context learning in large language models

(LLMs) (Brown et al., 2020; Chowdhery et al., 2023; Touvron et al., 2023), an area

which has recently become very popular (Dong et al., 2023). As part of in-context

learning, we give the LLM one or a few examples as context, and the model then adapts

its response accordingly, via analogy. The context is included as part of the prompt

with our query and the adaptation is done without updating the model parameters. The

main benefit of in-context learning is that it helps the model give significantly more

personalized responses to our queries, making them more helpful.

While few-shot learning (Wang et al., 2020) is the most famous application of meta-

learning, meta-learning has been useful for many other problems too (Hospedales et al.,

2021). These include learning new optimizers (Andrychowicz et al., 2016; Wichrowska

et al., 2017), beneficial loss functions (Bechtle et al., 2021; Gao et al., 2022a), neural

architecture search (NAS) (Liu et al., 2019a; Zoph and Le, 2017), making the models

more robust to domain shift (domain generalization) (Balaji et al., 2018; Li et al., 2018a),

and improved ability to deal with label noise present in the training data (Li et al., 2019a;

Gao et al., 2021). As we can see, meta-learning has a wide range of applications within

deep learning. Improvements to how we perform meta-learning can therefore have a
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wide impact, including in real-world applications such as prediction of clinical risk

(Zhang et al., 2019), identifying fraudulent transactions (Zheng et al., 2020b), or giving

feedback to students based on a few annotated examples (Wu et al., 2021).

Having discussed meta-learning more broadly, we now introduce the specific top-

ics we focus on as part of this thesis. One of the key challenges associated with

meta-learning is that meta-learning approaches are often computationally expensive

(Hospedales et al., 2021). The costs come from performing optimization on two levels,

one to train the model (inner loop) and the other to select the meta-parameters (outer

loop). In particular, naive implementation of such optimization can include full training

of the model for each update of the meta-parameters, resulting in extreme costs. Various

simplifications have been developed, but overall the computational requirements of

meta-learning make it challenging to use it for larger-scale problems or if given only

limited resources. This leads to the need for improving the computational efficiency of

meta-learning so that it can be scalable to the modern architectures needed for excellent

performance. Hence one focus of our work is on studying how to make meta-learning

algorithms more efficient.

Meta-learning is a general-purpose technique that can be used in a wide variety of

settings and to achieve various goals (Hospedales et al., 2021). While it has already

been used for many problems, for example few-shot learning, domain generalization

or neural architecture search that we mentioned earlier, there are many other problems

where meta-learning could make a difference. Consequently, another focus of our work

is on using meta-learning as a novel solution to selected deep-learning problems where

it is has not yet been applied.

1.2 Contributions

Overall as part of this thesis we explore how to make meta-learning algorithms more

efficient and what new problems can be suitably addressed using meta-learning. More

efficient meta-learning algorithms enable us to use more advanced deep-learning archi-

tectures as well as solve larger-scale problems. New meta-learning applications allow

us to expand the practical impact of meta-learning and also provide improved solutions

to the given problems.

The specific research questions we try to answer in the direction of efficiency are:

• How to improve the time and memory efficiency of gradient-based meta-learning

approaches?
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• How to improve the speed of gradient-free meta-learning approaches?

In terms of novel meta-learning applications we study the following questions:

• How can we use meta-learning to improve uncertainty calibration of neural

networks?

• How to extend the existing few-shot meta-learning approaches to situations where

tasks have a greater amount of diversity?

We answer these research questions and contribute to the area of meta-learning and

machine learning more broadly in the following ways:

• More efficient meta-learning algorithms: We develop two efficient meta-

learning algorithms, namely EvoGrad and PASHA. Together these two approaches

enable us to efficiently optimize meta-parameters in a wide range of settings.

– EvoGrad is an efficient gradient-based algorithm that enables us to optimize

millions of meta-parameters, under the assumption that these are differen-

tiable and directly influence the loss function (a very common scenario –

e.g. regularization, but not learning rate). A key bottleneck in meta-learning

is the need to backpropagate through backpropagation-based inner loop,

leading to expensive higher-order gradients. EvoGrad replaces the inner

loop with an evolutionary update for efficiency, while keeping the outer

loop gradient-based to enable precise learning of the meta-parameters. It

matches or even improves the performance of the models trained with the

learned meta-parameters, yet it requires significantly less time or memory.

– PASHA is an efficient gradient-free approach suitable for optimizing a

smaller number of meta-parameters. It does not require us to be able to

differentiate with respect to the meta-parameters and can also optimize

meta-parameters that do not directly influence the loss function. In hyperpa-

rameter optimization, the amount of resources for training various sets of

hyperparameters (meta-parameters) has direct impact on the total costs, yet

it is typically overestimated and strong configurations can be found using

far fewer resources. The key idea of PASHA is to progressively increase

the amount of maximum resources used for training models with various

sets of meta-parameters, and stop increasing the maximum resources when

performance rankings of the sampled configurations stabilize. In practice

the method leads to large speedups.
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• New meta-learning applications: We utilize meta-learning as a novel solution

to two challenging problems: calibration of neural networks and general-purpose

few-shot learning.

– Our proposed Meta-Calibration approach uses meta-learning and a new

differentiable calibration objective to directly optimize for well-calibrated

models, without any need for post-processing. The new calibration objective

is used as part of the outer loop to learn meta-parameters that lead to

well-calibrated models. We have obtained the best calibration by meta-

learning non-uniform label smoothing, but the objective works well also for

optimizing other types of meta-parameters.

– Within our new Meta Omnium benchmark we extend existing few-shot

learning approaches and evaluate their abilities to adapt to diverse task types

within computer vision, including image recognition, keypoint localization

and semantic segmentation. Existing computer vision benchmarks only

evaluated few-shot learners within single-task settings, but we challenge

them to a significantly larger extent and identify which few-shot learners

are the best in multi-task settings. Our evaluation tests also the ability to

adapt to completely new held-out task types.

Our contributions to the field enable us to scale meta-learning to larger settings (or

solve existing ones significantly more efficiently) and also obtain better solutions to the

given practically-useful problems.

1.3 Thesis Outline

Our aim is to make meta-learning algorithms more practical by improving their effi-

ciency, and also to use them to obtain new better solutions to various challenges within

the area of deep learning.

We provide the wider context and background needed to understand our work as

part of Chapter 2. We first describe conventional machine learning and introduce how

meta-learning extends it. We discuss the main meta-learning algorithms, covering

gradient-based meta-learning as well as gradient-free approaches, most notably ones

typically known as hyperparameter optimization (HPO). We then describe the various

challenges that can be solved with meta-learning.
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Part I: Meta-Learning Algorithms covers Chapters 3 and 4 and introduces our two

newly-proposed efficient meta-learning algorithms: EvoGrad and PASHA. Chapters 3

and 4 correspond to the following papers (Bohdal et al., 2021, 2023a):

• EvoGrad: Efficient Gradient-Based Meta-Learning and Hyperparameter
Optimization
Ondrej Bohdal, Yongxin Yang, Timothy Hospedales

Advances in Neural Information Processing Systems (NeurIPS), 2021

• PASHA: Efficient HPO and NAS with Progressive Resource Allocation
Ondrej Bohdal, Lukas Balles, Martin Wistuba, Beyza Ermis, Cedric Archambeau,

Giovanni Zappella

The Eleventh International Conference on Learning Representations (ICLR),

2023

Part II: Meta-Learning Applications covers Chapters 5 and 6 and describes how

we use meta-learning to develop new better solutions to two challenging problems:

calibration of neural networks and general-purpose few-shot learning. Chapters 5 and 6

are based on these papers (Bohdal et al., 2023c,b):

• Meta-Calibration: Learning of Model Calibration Using Differentiable Ex-
pected Calibration Error
Ondrej Bohdal, Yongxin Yang, Timothy Hospedales

Transactions on Machine Learning Research (TMLR), 2023

• Meta Omnium: A Benchmark for General-Purpose Learning-To-Learn
Ondrej Bohdal, Yinbing Tian, Yongshuo Zong, Ruchika Chavhan, Da Li, Henry

Gouk, Li Guo, Timothy Hospedales

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-

nition (CVPR), 2023

Chapter 7 summarizes our work, gives conclusions and also discusses opportunities

for future work in the area of meta-learning.

We include an appendix chapter for each of the four main chapters, to provide more

details or give additional analyses. The appendix chapters correspond to the appendices

of the individual papers.
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1.4 Additional Publications

As part of the PhD studies we have published also additional papers that are not included

in the thesis. We provide a list of them as part of this section. Several of the papers

relate to applications of meta-learning (Bohdal et al., 2020; Li et al., 2021a; Bohdal

et al., 2024), and we refer to them in Section 2.5 that summarizes existing meta-learning

applications as background.

Our additional publications are as follows:

• Flexible Dataset Distillation: Learn Labels Instead of Images
Ondrej Bohdal, Yongxin Yang, Timothy Hospedales

Neural Information Processing Systems (NeurIPS) Workshop on Meta-Learning,

2020

• A Channel Coding Benchmark for Meta-Learning
Rui Li, Ondrej Bohdal, Rajesh Mishra, Hyeji Kim, Da Li, Nicholas Lane, Timothy

Hospedales

Proceedings of the Neural Information Processing Systems (NeurIPS) Track on

Datasets and Benchmarks, 2021

• Feed-Forward Source-Free Domain Adaptation via Class Prototypes
Ondrej Bohdal, Da Li, Timothy Hospedales

European Conference on Computer Vision (ECCV) Workshop on Out of Distribu-

tion Generalization in Computer Vision, 2022

• Fairness in AI and Its Long-Term Implications on Society
Ondrej Bohdal, Timothy Hospedales, Philip H.S. Torr, Fazl Barez

Proceedings of the Stanford Existential Risks Conference, 2023

• Label Calibration for Semantic Segmentation Under Domain Shift
Ondrej Bohdal, Da Li, Timothy Hospedales

International Conference on Learning Representations (ICLR) Workshop on

Pitfalls of Limited Data and Computation for Trustworthy ML, 2023

• Impact of Noise on Calibration and Generalisation of Neural Networks
Martin Ferianc, Ondrej Bohdal, Timothy Hospedales, Miguel Rodrigues

International Conference on Machine Learning (ICML) Workshop on Spurious

Correlations, Invariance, and Stability, 2023
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• Feed-Forward Latent Domain Adaptation
Ondrej Bohdal, Da Li, Shell Xu Hu, Timothy Hospedales

Proceedings of the IEEE/CVF Winter Conference on Applications of Computer

Vision (WACV), 2024



Chapter 2

Background

Both meta-learning algorithms and applications are the focus of our work, and as part

of this chapter we provide the background useful for understanding our contributions.

We start by summarizing conventional machine learning and introducing how meta-

learning extends it. We formalize meta-learning as a bilevel optimization problem,

mentioning the diverse forms it can take. We then discuss gradient-based and gradient-

free approaches for meta-learning, describing how some of the most common methods

operate and what are their limitations. We also cover the different applications where

meta-learning has been used, including few-shot learning, domain generalization, neural

architecture search and others.

2.1 Conventional Machine Learning

We start by a brief summary of how standard machine learning models are trained

and evaluated. The training is done on a dataset Dtrain = {(xi,yi)}i=N
i=1 that includes N

datapoints, with (xi,yi) representing the i-th example and its label. A predictive model

ŷ = fθ(x) is parameterized by θ and trained by solving the following optimization

problem:

θ
∗ = argmin

θ

L(Dtrain;θ,ω),

where L is the loss function measuring the error between the predicted and true label,

and ω is the set of hyperparameters that influence how the model is trained. Validation

set Dval is commonly used for selection of the best checkpoint and hyperparameters,

and is separate from the training set. Evaluation of how well the model generalizes is

done on a further separate set of examples Dtest .

11



Chapter 2. Background 12

Conventional machine learning is characterised by using a pre-specified set of

hyperparameters ω that define how the model is trained. Their choice is critical as they

have a large influence on how successful the trained model is for the given problem.

However, selecting their values manually by trial and error is possible only in the most

limited cases and is not scalable, especially to settings that can include thousands or

millions such parameters.

Meta-learning does not assume meta-parameters ω are fixed, and instead it aims

to learn them so that the learning process can be improved and be more successful.

Meta-parameters ω are often meta-learned by learning across many tasks, and then used

for the new task that we want to solve. However, single-task cases also exist and are

relatively common.

2.2 Meta-Learning as a Bilevel Optimization Problem

Meta-parameters (also known as hyperparameters or meta-knowledge) are parameters

that specify how the neural network learns. When learning them, there are two levels of

learning happening. There is an inner-level (base) learning that updates the parameters

of the main (base) model. This part corresponds to standard training of machine learning

models. There is also an outer-level (meta) learning that updates the meta-parameters

based on how they influence the main model training. This gives rise to the bilevel

optimization problem where we perform optimization on two levels: inner and outer

level. We have illustrated this process earlier in Figure 1.2.

Meta-learning is done by training across episodes, which often represent various

tasks sampled from a task distribution T ∼ p(T ). In such case, the inner loop corre-

sponds to learning to solve a new task T that has data DT , with the goal of learning

meta-knowledge ω that enables us to learn to solve new tasks better:

min
ω

ET ∼p(T )L(DT ,ω).

The training Dtrain
T data in an episode are called the support set, while the evaluation

data Dval
T are called the query set. For meta-learning across tasks, there are three

stages: meta-training, meta-validation and meta-testing. During meta-training we

learn the meta-knowledge by training across tasks. Meta-validation tasks are used for

selecting the meta-knowledge checkpoint that generalizes the best and also for selection

of parameters that influence the meta-training. During meta-testing, we sample new

unseen tasks to evaluate the quality of the learned meta-knowledge by using it to train
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new models. Disjoint sets of examples are used in the different meta-learning stages (in

some common cases using separate classes). Analogous to conventional learning, meta-

learning has the concepts of meta-underfitting and meta-overfitting. Meta-overfitting in

particular occurs when the meta-parameters do not generalize to new tasks, for example

due to meta-training on insufficient number of tasks. Note that it is possible to have

episodes sampled from only one task, but then evaluation is done on the same task.

Meta-training is usually solved as bilevel optimization. Before providing a formal

definition, we give a taxonomy of meta-learning components (Hospedales et al., 2021):

• Meta-representation that defines what the meta-parameters ω are that we meta-

learn (e.g. regularization parameters).

• Meta-optimizer that defines how we learn the values of these meta-parameters

(e.g. using Adam optimizer (Kingma and Ba, 2015)).

• Meta-objective that specifies the goal of meta-learning and can be understood as a

reason why the meta-parameters influence the main model in the given way. The

meta-objective is influenced by the outer loss Lmeta, how the data for evaluating

the loss are sampled and also the flow of data between the learning levels.

Within meta-learning, the goal is to find meta-parameters ω that minimize the meta-

loss Lmeta (outer objective) of the model parametrized by θ and trained with loss Lbase

(inner objective) and ω:

ω
∗ = argmin

ω

Lmeta
(

Dval
T ;θ

∗
)

such that θ
∗ = argmin

θ

Lbase (Dtrain
T ;θ,ω

)
.

(2.1)

Note that meta-parameters ω are directly used only for training the base model and

not during the outer loop, reflecting the typical use-case. While parameters of the base

model θ are commonly obtained using gradient-based approaches for neural networks,

meta-parameters ω can be selected with or without gradient-based approaches.

2.3 Gradient-Based Meta-Learning

2.3.1 Offline Variation

The key feature of gradient-based meta-learning (GBML) is that meta-parameters ω are

updated by gradient descent on Lmeta with respect to ω, which requires backpropagating
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through the inner loop. By default the inner loop includes full training of the base

model from scratch, per each update of the meta-parameters. Full training is only viable

in limited cases, for example in few-shot learning where training of the model takes

only a few steps (Finn et al., 2017; Antoniou et al., 2019). Meta-learning with full

training in the inner loop is also known as offline meta-learning (Hospedales et al.,

2021) and is summarized in Algorithm 1. The challenge with full training in the

inner loop is not only that the training itself takes time, but also that backpropagation

through the inner loop requires memory proportional to the number of inner loop steps

when using common reverse-mode-differentiation implementations (Hospedales et al.,

2021). Backpropagation through long inner loops typically also suffers from gradient

degradation and instability (Hospedales et al., 2021; Metz et al., 2018, 2022).

Algorithm 1 Offline meta-learning

1: Input: N: number of inner-loop steps, α: inner-loop learning rate, β: outer-loop

learning rate

2: Output: trained base model θ and meta-parameters ω

3: ω∼ p(ω)

4: while ω not converged do
5: θ0 ∼ p(θ)

6: for i in 1..N do
7: Sample training examples Dtrain

T
8: θi = θi−1−α∇θi−1Lbase (Dtrain

T ;θi−1,ω
)

9: end for
10: Sample validation examples Dval

T
11: ω← ω−β∇ωLmeta (Dval

T ;θN
)

12: end while

2.3.2 Online Variation

In order to apply meta-learning also to larger-scale settings (Shu et al., 2019; Xia et al.,

2021), the full training in the inner loop can be replaced by a shorter alternative, in

particular one-step update taken from the current parameters of the base model. This

version is called online meta-learning (Hospedales et al., 2021) and means we jointly

train the base model and the meta-parameters, as summarized in Algorithm 2. We

perform one step to update the base model in the inner loop and then we perform
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one step to update the meta-parameters, backpropagating through the one-step inner

loop. The process is repeated until the base model is fully trained. The described way

of online meta-learning is also called T1−T2 (Luketina et al., 2016), with the name

selected by referring to the training set as T1 and the validation set as T2. Instead of

using only one step in the inner loop, a few steps can also be used, and the process is

often also known as truncated inner loop (Maclaurin et al., 2015; Shaban et al., 2019).

A key limitation of online meta-learning is that it suffers from short-horizon bias (Wu

et al., 2018), so the learned meta-parameters are likely to be sub-optimal with regard to

the whole training. Nevertheless, online meta-learning is in many cases the only viable

option due to computational costs.

Algorithm 2 Online meta-learning

1: Input: α: inner-loop learning rate, β: outer-loop learning rate

2: Output: trained base model θ and meta-parameters ω

3: ω∼ p(ω)

4: θ∼ p(θ)

5: while θ not converged do
6: Sample training Dtrain

T and validation examples Dval
T

7: θ← θ−α∇θLbase (Dtrain
T ;θ,ω

)
8: ω← ω−β∇ωLmeta (Dval

T ;θ
)

9: end while

2.3.3 Decomposition of Gradients

To learn meta-parameters ω according to Equation 2.1 using gradient-based methods,

we need to calculate the hypergradient ∇ωLmeta. The hypergradient can be expanded

using the chain rule as follows:

∂Lmeta (Dval
T ;θ∗ (ω)

)
∂ω

=
∂Lmeta (Dval

T ;θ∗ (ω)
)

∂ω︸ ︷︷ ︸
direct gradient

+
∂Lmeta (Dval

T ;θ∗ (ω)
)

∂θ∗(ω)

∂θ∗(ω)

∂ω︸ ︷︷ ︸
indirect gradient

.

(2.2)

The expanded formula includes the direct gradient and the indirect gradient. The

direct gradient is often zero because in most cases meta-parameters ω do not directly

influence loss Lmeta. Meta-parameters ω influence loss Lmeta indirectly by impacting

how the model parameters θ are updated. Note that the direct gradient can be non-zero,
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for example when meta-learning the initial parameters of the model. A first-order

variant of the popular few-shot learning approach MAML (Finn et al., 2017) relies on

it and approximates the hypergradient with only the direct term. Such approximation

leads to large speedups and memory savings, with marginal decrease in performance.

A key challenge with the indirect gradient is that it includes higher-order derivatives.

We can see how the higher-order derivatives arise by substituting the gradient-based

update of the model parameters θ← θ−α∇θLbase (Dtrain
T ;θ,ω

)
into Equation 2.2:

∇ωLmeta =
∂Lmeta (Dval

T ;θ∗ (ω)
)

∂ω
+

∂Lmeta (Dval
T ;θ∗ (ω)

)
∂θ∗(ω)

∂θ∗(ω)

∂ω

=
∂Lmeta (Dval

T ;θ∗ (ω)
)

∂ω
−α

∂Lmeta (Dval
T ;θ∗ (ω)

)
∂θ∗(ω)

∂2Lbase (Dtrain
T ;θ,ω

)
∂ω∂θ

(2.3)

The presence of ∇2
ω,θLbase in Equation 2.3 shows we need to calculate higher-

order gradients to compute the value of the hypergradient ∇ωLmeta. The need to

calculate higher-order gradients is a bottleneck in terms of memory and time, making it

challenging to use larger models. Our EvoGrad approach that we describe in Chapter 3

focuses on resolving it by using evolutionary update during the inner loop. As a result,

it significantly accelerates meta-learning and uses noticeably less memory, making it

easier to combine meta-learning with larger models. More detailed discussion on how

higher-order gradients contribute to increased memory and time is provided in Chapter 3.

Chapter 3 also includes a discussion of more advanced GBML methods, especially ones

based on Implicit Function Theorem (IFT) (Lorraine et al., 2020; Rajeswaran et al.,

2019) (not included in the main background chapter as we do not directly use them).

GBML methods are challenging to apply when trying to learn discrete parameters

or when an objective includes non-differentiable operations (Hospedales et al., 2021).

In these cases suitable approximations need to be found, or alternatively different types

of meta-optimizers can be used. In particular, gradient-free methods can be useful and

we discuss them next.

2.4 Gradient-Free Meta-Learning

Diverse families of approaches exist for gradient-free optimization of meta-parameters.

The most notable ones include common hyperparameter optimization methods, rein-

forcement learning and evolutionary search.
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Standard hyperparameter optimization (HPO) can be seen as a form of meta-learning

because the hyperparameters are optimized and influence how well the model learns.

HPO methods perform bilevel optimization since training the base model with the

sampled configuration corresponds to the inner loop, and identifying what configurations

to try and select as the final option corresponds to the outer loop. The focus is typically

on the single-task case, which means that all learning episodes aim to solve the same

problem. Note that due to how gradient-free HPO methods operate, they are typically

only suitable for optimizing a smaller number of hyperparameters.

There are two families of HPO methods that are the most widely used: Bayesian

Optimization and multi-fidelity methods (Feurer and Hutter, 2019). We give a compara-

tively more detailed discussion on the HPO methods rather than reinforcement learning

and evolutionary search because one of our main contributions, the PASHA algorithm

described in Chapter 4, is a multi-fidelity HPO method.

2.4.1 Basic Hyperparameter Optimization Methods

Before discussing Bayesian Optimization and multi-fidelity methods, we discuss the

simplest HPO approaches: grid search and random search (Bergstra and Bengio, 2012).

As part of grid search we select a set of values for each hyperparameter that we try

to tune. We then try all of the combinations, resembling a grid of values. Such way

of searching for strong hyperparameters is known to be inefficient, particularly when

only some of the hyperparameters have larger impact on the objective that we optimize.

When there are both important and unimportant parameters, random search has been

shown to be significantly more efficient, as illustrated in Figure 2.1.

Random search (Bergstra and Bengio, 2012) randomly samples combinations of

values from the pre-defined distributions. Its key benefit is that by random sampling it

evaluates a larger number of values of the important parameters, making it more likely

to find a strong configuration with smaller number of trials. When the search space is

well-designed, random search can be hard to beat. However, generally it is slow because

it fully trains each candidate configuration and is not sample-efficient as it does not use

a model to sample the configurations.

2.4.2 Bayesian Optimization

Bayesian Optimization methods utilize a model when deciding which configuration to

evaluate next, based on information about the configurations evaluated so far (Feurer
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Figure 2.1: Illustration of how grid search and random search cover the search space

in the presence of important and unimportant parameters. By sampling the values

randomly, random search evaluates more values of the important parameter and can

more efficiently find a good value. Own figure inspired by (Bergstra and Bengio, 2012).

and Hutter, 2019; Snoek et al., 2012). These methods often use Gaussian Processes

to model the performance (Rasmussen and Williams, 2005; Snoek et al., 2015), but

random forests (Hutter et al., 2011) and trees of Parzen estimators (TPE) (Bergstra

et al., 2011) can also be used. More specifically these approaches model which parts

of the search space should be investigated more to find a better configuration. Suitable

trade-off between exploration and exploitation needs to be made as parts of the search

space have large uncertainty, but can lead to strong configurations (Feurer and Hutter,

2019). Due to using a model to sample the configurations, such methods are known to

be sample-efficient and can identify strong configurations even with fewer trials.

2.4.3 Multi-Fidelity Methods

Multi-fidelity methods sequentially allocate more resources to the more promising

configurations. Compared to Bayesian Optimization, multi-fidelity methods have been

faster in large-scale settings, can be more easily parallelized and have also become more

popular, especially in deep learning (Feurer and Hutter, 2019).

The simplest multi-fidelity method is called successive halving (SH) (Karnin et al.,

2013; Jamieson and Talwalkar, 2016). SH trains each candidate configuration with a

small amount of resources, before successively pruning the less promising configura-

tions and training the promising ones with more resources. Each round of promotion

where we prune some of the configurations and promote the other ones by training them

with more resources is called a rung. We illustrate SH in Figure 2.2.
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Figure 2.2: Illustration of successive halving, the simplest multi-fidelity method. Each

configuration is first trained with a small amount of resources. Configurations are then

repeatedly pruned, with the remaining ones trained using increasing amount of resources.

Each round of promotion (or pruning) is called a rung.

More advanced multi-fidelity methods than SH exist, especially Hyperband and

ASHA that are among the most popular. Hyperband (Li et al., 2018b) extends SH by

running SH with various numbers of configurations for various amounts of minimum

resources. ASHA (Li et al., 2020a) extends SH by performing asynchronous evaluation

of the sampled configurations, which typically results in significant practical speedups

due to parallelization. Note that selecting a reasonable amount of minimum resources is

often relatively simple, so typically ASHA is noticeably faster than Hyperband and can

find similarly strong configurations.

While ASHA is among the fastest HPO methods, there are still ways to significantly

improve its speed. In particular, we identify that if the ranking of configurations

stabilizes early, then resources can be saved by not training the best configurations

with more resources. Based on this observation we develop a method called PASHA

(described in Chapter 4). We show PASHA finds similarly strong configurations as

ASHA, but usually can do it significantly more quickly, especially for cases where

training a configuration takes a long time.

Approaches that combine Bayesian Optimization with multi-fidelity methods are

available, as done for example in BOHB (Falkner et al., 2018). Our PASHA method

can also be combined with Bayesian Optimization to enable model-based sampling of

configurations, and we evaluate such extension in our experiments.
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2.4.4 Reinforcement Learning

The outer-loop objective can be optimized using reinforcement learning (RL) methods,

which is useful when the inner loop includes non-differentiable components (Cubuk

et al., 2019) or if the outer-loop objective itself is not differentiable (Huang et al.,

2019). The hypergradient is usually estimated with policy gradient methods such as

REINFORCE (Williams, 2004), but such way of meta-learning turns out to be extremely

costly in practice (Hospedales et al., 2021). If differentiable approximations can be

made, gradient-based meta-learning approaches can drastically reduce the compute

requirements. For example, a gradient-based approach for automatic data augmentation

(Li et al., 2020d) has been able to obtain comparable accuracy to a RL-based approach

(Cubuk et al., 2019), while being about 10,000-50,000x faster depending on the setting.

2.4.5 Evolutionary Search

A further option for optimizing the meta objective is to use evolutionary search (ES)

approaches (Salimans et al., 2017; Stanley et al., 2019). ES algorithms are inspired by

natural evolution and their general workflow can be described as follows (Salimans et al.,

2017): at each iteration (generation), we perturb (mutate) a population of parameters

(genotypes) and evaluate their objective function (fitness). We then combine the param-

eters to form the next generation population. The process is repeated until convergence

or for the specified number of iterations, and we summarize it in Algorithm 3.

Algorithm 3 Evolutionary search
1: Input: α: learning rate, σ: noise standard deviation, n: population size

2: Output: parameters ω

3: Initialize parameters ω∼ p(ω)

4: while ω not converged do
5: Sample ε1, . . .εn ∼N (0, I)

6: Evaluate fitness of each offspring Fi = F (ω+σεi) for i = 1, ...,n

7: Update ω← ω+α
1

nσ ∑
n
i=1 Fiεi

8: end while

ES methods have a number of advantages, including 1) the ability to optimize

any type of model and meta-objective, 2) avoiding the challenges associated with

backpropagation over long inner loop, and 3) being highly parallelizable (Salimans

et al., 2017). Their disadvantages include 1) the need for rapidly increasing population
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when more parameters are tuned, 2) sensitivity to the details of the evolution strategy,

and 3) worse fitting ability than gradient-based methods (Hospedales et al., 2021). ES

approaches have often been applied in reinforcement learning settings (Houthooft et al.,

2018; Song et al., 2020), but they have also been used for finding useful loss functions

(Gonzalez and Miikkulainen, 2020), learning rules (Metz et al., 2022) and architectures

(Stanley et al., 2019; Real et al., 2019).

We have been broadly inspired by ES when designing EvoGrad in Chapter 3. While

ES methods are commonly used in the outer loop, we have exploited it in the inner loop

for efficiency and kept the outer loop gradient-based for precision.

2.5 Applications of Meta-Learning

Meta-learning is a tool that can be used for a wide range of applications, in a way

similar to how neural networks can be optimized to solve diverse tasks. Meta-learning

has risen to prominence thanks to being able to obtain excellent performance on the

challenging problem of few-shot learning (Hospedales et al., 2021). In this section we

will discuss a number of problems for which meta-learning has been helpful. Two of

our main contributions presented in this thesis (Bohdal et al., 2023c,b) consider novel

applications of meta-learning, so we cover existing meta-learning applications in certain

depth to provide a more complete overview.

2.5.1 Few-Shot Learning

Few-shot learning is about learning a new concept from only a few examples. It is

known to be very challenging because neural networks usually require a large amount

of examples for learning new concepts (Marcus, 2018). However, being able to learn

from a small number of examples would have significant practical benefits as collecting

and labelling large datasets is expensive.

Most commonly few-shot learning is studied for classification problems, where the

goal is to learn to distinguish among N classes after seeing k examples of each (N-way

k-shot learning). Meta-learning is done across tasks as described in Section 2.2. In each

task we sample a combination of N classes and k support examples are sampled for

each. The support examples are used in the inner loop, while further query examples

from the same classes are used in the outer loop to learn the meta-parameters. We

illustrate few-shot learning on a 3-way 2-shot task in Figure 2.3.
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Dog Cat Fish

? ? ?

Figure 2.3: Illustration of few-shot learning. We want to learn to distinguish images of

dogs, cats and fish after seeing only two examples of each.

A large number of meta-learning approaches have been proposed for few-shot

learning. Some of the most famous ones include MAML (Finn et al., 2017), Prototypical

networks (Snell et al., 2017) and the Relation network (Sung et al., 2018). MAML

meta-learns the initial weights of a neural network that are then fine-tuned using a small

number of updates on the support examples. MAML has been extended in various ways,

for example by updating also the curvature information (Park and Oliva, 2019) or using

a variety of techniques to stabilize its training as part of MAML++ (Antoniou et al.,

2019). Prototypical networks meta-learn a metric space in which we make predictions

by finding the closest prototype representation of each class. A prototype is created

by computing the average feature representation of the support examples of the given

class. Relation network also comes from the family of metric-based few-shot learners

and compared to Prototypical networks it meta-learns a deep distance metric instead of

using a fixed metric. Few-shot learning has also been studied in cross-domain settings

(Tseng et al., 2020; Triantafillou et al., 2020), which more realistically reflects scenarios

seen during real-world deployment.

Few-shot learning has also been studied for other problems than classification. In

computer vision, it has been studied, for example, for segmentation (Min et al., 2021;

Hong et al., 2022) and keypoint estimation (Lu and Koniusz, 2022; Xiao and Marlet,

2020). Few-shot learning has additionally been used in other data modalities, including

text (Bragg et al., 2021) and speech (Heggan et al., 2022).

In recent years few-shot learning has gained more prominence for the text data

modality, in the form of in-context learning (ICL) (Dong et al., 2023) for large language

models (LLMs) (Zhao et al., 2023a). When given a small number of examples as context,

LLMs are able to adapt their response and make it more personalized and helpful to the

user. ICL also helps LLMs perform series of more complex tasks such as mathematical

reasoning (Wei et al., 2022). Why ICL works is not fully understood, but various studies
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have suggested ICL may implicitly perform gradient descent (Von Oswald et al., 2023;

Dai et al., 2023), drawing similarities to how MAML performs adaptation. It has also

been suggested ICL may emerge as a result of how the pre-training data are distributed,

including due to items appearing in clusters (Chan et al., 2022). With such structure

and many different sources of data used for the pre-training stage, it can be seen as a

way of pre-training across tasks, making it possible to do accurate few-shot learning.

2.5.2 Reinforcement Learning

The main focus of reinforcement learning (RL) is on learning control policies that

maximize rewards obtained by performing the selected actions. RL involves a number

of challenges, including sample inefficiency coming from sparse rewards, the need to

explore the environment and having to deal with high-variance optimizers (Williams,

2004). Meta-learning is well-suited for RL because learning tasks naturally arise

(Hospedales et al., 2021), for example, as navigation inside various environments

(Mishra et al., 2018) or competition with different agents (Al-Shedivat et al., 2018).

Meta-learning has been utilized for RL in many ways, including for sample-efficient

learning, learning better exploration policy or mitigating the challenges associated

with optimization in RL. Few-shot learning in RL takes the form of learning a policy

for a new task with only a small number of interactions with the environment. Many

gradient-based meta-learning approaches can be utilized for RL (Hospedales et al.,

2021), including MAML (Finn et al., 2017). Exploration strategy in RL is often based

on selecting random actions (Schulman et al., 2017) or using heuristics (Sigaud and

Stulp, 2019), but it can be improved by treating the exploration strategy as a set of meta-

parameters that we can meta-optimize (Alet et al., 2020; Stadie et al., 2018; Garcia and

Thomas, 2019). Optimization is challenging in RL due to the nature of the problem, and

it has been shown that using learnable losses or rewards can be particularly beneficial

(Zhou et al., 2020b; Bechtle et al., 2021; Kirsch et al., 2020). While meta-learning has

many uses in RL, we have only focused on applications outside of RL in our work.

2.5.3 Domain Generalization and Adaptation

The goal of domain generalization (DG) is to train models that are robust and obtain

strong performance in out-of-distribution settings (Muandet et al., 2013). The robustness

is typically improved by training across various domains, with various strategies to

maximize the benefits of such multi-domain training. Meta-learning approaches for
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DG usually sample a domain to use in the inner loop and then evaluate performance on

another domain in the outer loop (Hospedales et al., 2021).

Many meta-learning approaches have been proposed to tackle the challenge of

domain generalization. MLDG (Li et al., 2018a) is one of the first such approaches, and

its key idea is that updates to the parameters of the neural network using one domain

should also lead to better performance on another domain. MetaReg (Balaji et al.,

2018) is another popular DG method and it meta-learns L1 regularization parameters to

improve out-of-distribution generalization. (Li et al., 2019b) have meta-trained Feature-

Critic networks to generate an auxiliary loss function that helps domain generalization.

In the context of few-shot learning, (Tseng et al., 2020) have meta-learned noise layers

that improve the ability to solve few-shot learning tasks coming from new domains.

Domain generalization is challenging, and it has been shown that under a fair

evaluation protocol many of the methods do not perform better than simple training

across domains (Gulrajani and Lopez-Paz, 2021). If any data from the target domain

are available, they can be exploited to improve the performance more reliably. How

to use such data is studied as part of domain adaptation (Csurka, 2017), and meta-

learning approaches have also been proposed for this setup. Li and Hospedales (2020)

have utilized meta-learning to optimize the initialization of current DA algorithms.

Bohdal et al. (2024) have considered a domain adaptation setup that models the realistic

conditions of adaptation on deployed devices. They have developed a method that

meta-learns an attention-based mechanism to find relevant examples for adaptation.

2.5.4 Neural Architecture Search (NAS)

The architecture of a neural network has a large impact on the performance of the

model. While well-performing architectures are often discovered by human insight, the

process can be automatized (Elsken et al., 2019) and optimized using meta-learning.

Meta-parameters specify the architecture of the neural network and are used during the

inner loop to construct it and train with it. In the outer loop these meta-parameters are

updated so that architectures with good validation performance can be found.

Approaches from various meta-learning families have been developed, initially

using reinforcement learning (Zoph and Le, 2017) or evolutionary search (Real et al.,

2019; Stanley et al., 2019). However, such approaches are often costly and gradient-

based approaches can be significantly more efficient. DARTS (Liu et al., 2019a;

Zela et al., 2020) have developed an approach that uses a continuous relaxation of
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the architecture representation and optimizes it using gradient-based meta-learning.

Additionally, hyperparameter optimization techniques can be used for NAS, and we

also evaluate our PASHA approach on NAS in Chapter 4.

A variety of challenges are associated with NAS (Hospedales et al., 2021):

• The search space is hard to define, given the large amount of options that can

be included. The search space is hence significantly restricted, for example by

searching only for the design of the cell that is reused (Liu et al., 2019a).

• NAS is costly and the discovered architecture may not transfer well to new

settings, so the search needs to be carefully designed if transferability is desired

(Zoph et al., 2018).

• NAS experiments have often been difficult to reproduce as small details deter-

mining how the search is done can have a significant impact on the result (Li and

Talwalkar, 2020; Elsken et al., 2021).

To mitigate the lack of reproducibility, NAS benchmarks have been developed (Ying

et al., 2019; Klein and Hutter, 2019; Dong and Yang, 2020; Siems et al., 2020; Mehta

et al., 2022). Such benchmarks are pre-computed or use performance predictors, which

makes the field of NAS more accessible.

2.5.5 Neural Network Optimization

Meta-learning can be used to optimize the various components that specify how we

optimize or train neural networks. In particular, the optimizer and the loss function

have a large impact on training of the neural network. A variety of approaches for

meta-learning the neural network optimizer have been proposed (Andrychowicz et al.,

2016; Wichrowska et al., 2017; Metz et al., 2019), with VeLO optimizer (Metz et al.,

2022) attracting the most attention recently. VeLO achieves excellent performance on

a wide variety of tasks and does not need hyperparameter tuning, making it simple to

use in practice. The loss function can also be meta-learned, for example to improve

the performance (Bechtle et al., 2021), learning speed (Gonzalez and Miikkulainen,

2020), ability to learn with noisy labels (Gao et al., 2021) or better generalization across

domains (Gao et al., 2022a).
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2.5.6 Dataset Distillation

Dataset distillation is an area that has gained significant traction recently and often

relies on meta-learning (Lei and Tao, 2023; Sachdeva and McAuley, 2023). Its main

goal is to condense a full-sized dataset into a small synthetic dataset that can be used

for training well-performing models. Such small datasets can be useful in various ways,

for example for fast neural architecture search or also for memory replay in continual

learning (Lei and Tao, 2023; Sachdeva and McAuley, 2023). The distillation is achieved

by meta-learning the synthetic data and training with them in the inner loop, while the

outer loop evaluates the performance on standard data and updates the synthetic dataset.

Various approaches have been developed, with (Wang et al., 2018b; Bohdal et al.,

2020; Zhao et al., 2021) among the first ones. Wang et al. (2018b) have introduced the

general problem of dataset distillation, meta-learning the pixel values of the distilled

images. Bohdal et al. (2020) have meta-learned synthetic labels for real images (label

distillation), showing how it leads to strong dataset distillation performance and is more

transferable. Zhao et al. (2021) have utilized gradient-matching as a way to meta-learn

high-quality synthetic datasets, leading to significant improvements in performance.

2.5.7 Real-World Applications

Meta-learning has been used in various real-world applications, including medicine,

finance, education, communication systems and others. In medicine, it has been used

for clinical risk prediction with limited data (Zhang et al., 2019), low-resource medical

dialogue generation (Lin et al., 2021) or few-shot medical image classification (Singh

et al., 2021). Meta-learning has also found use in finance, for example to do index

tracking (Yang and Hospedales, 2023) or to identify fraudulent credit card operations

(Zheng et al., 2020b). A particularly interesting real-world use of meta-learning has

been within education, where it has been used for providing feedback to students based

on only a small number of annotated examples (Wu et al., 2021). The approach has

improved upon the quality of feedback provided by teaching assistants and has been

deployed to a massive open online course with thousands of students. In the context of

communication systems meta-learning has been used for more accurate decoding of

noisy signals that were subject to interference during transmission (Park et al., 2020; Li

et al., 2021a). Additionally meta-learning has been useful in cyber-security applications

(Yang et al., 2023) and for detecting severe weather phenomena in radar images (Kamani

et al., 2019).
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∗∗∗

We have discussed both meta-learning algorithms and applications, giving us the back-

ground beneficial for understanding our main contributions. Each of the further chapters

includes its own related work section to provide further background information rel-

evant to the given chapter. We continue with Part I: Meta-Learning Algorithms that

introduces our proposed efficient meta-learning algorithms, after which we discuss

novel meta-learning applications in Part II: Meta-Learning Applications.



Part I

Meta-Learning Algorithms
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Chapter 3

EvoGrad: Efficient Gradient-Based
Meta-Learning

The content of this chapter corresponds to paper:

EvoGrad: Efficient Gradient-Based Meta-Learning and Hyperparameter
Optimization
Ondrej Bohdal, Yongxin Yang, Timothy Hospedales

Advances in Neural Information Processing Systems (NeurIPS), 2021

Gradient-based meta-learning and hyperparameter optimization have seen signifi-

cant progress recently, enabling practical end-to-end training of neural networks together

with many hyperparameters. Nevertheless, existing approaches are relatively expensive

as they need to compute second-order derivatives and store a longer computational

graph. This cost prevents scaling them to larger network architectures. We present Evo-

Grad, a new approach to meta-learning that draws upon evolutionary techniques to more

efficiently compute hypergradients. EvoGrad estimates hypergradient with respect to

hyperparameters without calculating second-order gradients, or storing a longer compu-

tational graph, leading to significant improvements in efficiency. We evaluate EvoGrad

on three substantial recent meta-learning applications, namely cross-domain few-shot

learning with feature-wise transformations, noisy label learning with Meta-Weight-

Net and low-resource cross-lingual learning with meta representation transformation.

The results show that EvoGrad significantly improves efficiency and enables scaling

meta-learning to bigger architectures such as from ResNet10 to ResNet34.

29
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3.1 Introduction

Gradient-based meta-learning and hyperparameter optimization have been of long-

standing interest in neural networks and machine learning (Larsen et al., 1996; Maclau-

rin et al., 2015; Bengio, 2000). Hyperparameters (aka meta-parameters) can take diverse

forms, especially under the guise of meta-learning, where there has recently been an

explosion of successful applications addressing diverse learning challenges (Hospedales

et al., 2021). For example to name just a few: training optimizer initial condition in

support of few-shot learning (Finn et al., 2017; Antoniou et al., 2019; Li et al., 2017);

training instance-wise weights for cleaning noisy datasets (Shu et al., 2019; Ren et al.,

2018b); training loss functions in support of generalization (Li et al., 2019b) and learn-

ing speed; and training stochastic regularizers in support of cross-domain robustness

(Tseng et al., 2020).

Most of these applications share the property that meta-parameters impact validation

loss only indirectly through their effect on model parameters, and so computing valida-

tion loss gradients with respect to meta-parameters usually leads to the need to compute

second-order derivatives, and store longer computational graphs for backpropagation.

This eventually becomes a bottleneck to execution time, and – more severely – to scaling

the size of the underlying models, given the practical limitation of GPU memory.

There has been steady progress in the development of diverse practical algorithms

for computing validation loss with respect to meta-parameters (Luketina et al., 2016;

Lorraine et al., 2020; Maclaurin et al., 2015). Nevertheless they mostly share some

form of the aforementioned limitations. In particular, the majority of recent successful

practical applications (Shu et al., 2019; Tseng et al., 2020; Li et al., 2019b; Balaji et al.,

2018; Bohdal et al., 2020; Liu et al., 2019c; Shan et al., 2020) essentially use some

variant of the T1−T2 algorithm (Luketina et al., 2016) to estimate the gradient ∂ℓV
∂ω

of

validation loss w.r.t. hyperparameters ω. This approach computes the gradient online at

each step of updating the base model θ, and estimates it as ∂ℓV
∂ω
≈ ∂ℓV

∂θ

∂2ℓT
∂θ∂ω

, for training

loss ℓT . As with many alternative estimators, this requires second-order derivatives,

and extending the computational graph. Besides the additional computation cost, this

limits the size of the base model that can be used in a given GPU, since the memory

cost of meta-learning is now multiple times the size of vanilla backpropagation. This in

turn prevents the application of meta-learning to problems where large state-of-the-art

model architectures are required.

To address this issue, we draw inspiration from evolutionary optimization methods
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(Salimans et al., 2017) to develop EvoGrad, a meta-gradient algorithm that requires no

higher-order derivatives and as such is significantly faster and lighter than the standard

approaches. In particular, we take the novel view of estimating meta-gradients via a

putative inner-loop evolutionary update to the base model. As this requires no gradients

itself, the meta-gradient can then be computed using first-order gradients alone, and

without extending the computational graph – leading to efficient hyperparameter updates.

Meanwhile for efficient and accurate base model learning, the real inner-loop update

can separately be carried out by conventional gradient descent.

Our EvoGrad is a general meta-optimizer applicable to many meta-learning ap-

plications, among which we choose three to demonstrate its impact: the LFT model

(Tseng et al., 2020) observes that a properly tuned stochastic regularizer can signifi-

cantly improve cross-domain few-shot learning performance. We show that by training

those regularizer parameters with EvoGrad, rather than the standard second-order ap-

proach, we can obtain the same improvement in accuracy with significant reduction

in time and memory cost. This allows us to scale LFT from the original ResNet10 to

ResNet34 within a 12GB GPU. Second, the Meta-Weight-Net (MWN) (Shu et al., 2019)

model deals with label noise by meta-learning an auxiliary network that re-weights

instance-wise losses to down-weight noisy instances and improve validation loss. We

also show that EvoGrad can replicate MWN results with significant cost savings. Third,

we demonstrate the benefits of EvoGrad on an application from NLP, in addition to

the ones from computer vision: low-resource cross-lingual learning using MetaXL

approach (Xia et al., 2021).

To summarize, our main contributions are: 1) We introduce EvoGrad, a novel

method for gradient-based meta-learning and hyperparameter optimization that is simple

to implement and efficient in time and memory requirements. 2) We evaluate EvoGrad

on a variety of illustrative and substantial meta-learning problems, where we demon-

strate significant compute and memory benefits compared to standard second-order

approaches. 3) In particular, we illustrate that EvoGrad allows us to scale meta-learning

to bigger models than was previously possible on a given GPU size, thus bringing

meta-learning closer to the state-of-the-art frontier of real applications.

We provide source code for EvoGrad at: https://github.com/ondrejbohdal/

evograd.

https://github.com/ondrejbohdal/evograd
https://github.com/ondrejbohdal/evograd
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3.2 Related Work

Gradient-based meta-learning solves a bilevel optimization problem where validation

loss is optimized with respect to the meta-knowledge by backpropagating through the

update of the model on training data and with meta-knowledge. The meta-knowledge

updates form an outer loop, around an inner loop of base model updates. The inner loop

can run for one (Luketina et al., 2016), few (Shaban et al., 2019; Maclaurin et al., 2015),

or many (Lorraine et al., 2020) steps within each outer-loop iteration. Meta-knowledge

can take many forms, for example, it can be an initialization of the model weights (Finn

et al., 2017), feature-wise transformation layers (Tseng et al., 2020), regularization

to improve domain generalization (Balaji et al., 2018) or even a synthetic training set

(Wang et al., 2018b; Bohdal et al., 2020). Most substantial practical applications use a

one or few-step inner loop for efficiency.

More recently, several methods (Lorraine et al., 2020; Rajeswaran et al., 2019) have

utilized Implicit Function Theorem (IFT) to develop new gradient-based meta-learners.

These methods use multiple inner-loop steps without the need to backpropagate through

whole inner loop, which significantly improves memory efficiency over methods that

need keep track of the whole inner loop training process. However, IFT methods assume

the model has converged in the inner loop. This makes them unsuited for the majority

of practical applications above where training the inner loop to convergence for each

hypergradient step is infeasible.

Furthermore, the IFT hypergradient is still more costly compared to one-step T1−T2

method. The costs come from the associated overhead with approximating an inverse

Hessian of the training data with respect to the model parameters. Note that the Hessian

itself does not need to be stored due to the mechanics of reverse-mode differentiation

(Griewank, 1993; Baydin et al., 2018). However, this does not eliminate the remaining

calculations which still require higher-order gradients that result in backpropagation via

longer graphs due to additional gradient nodes. For these reasons, we focus comparison

on the more widely used T1−T2 strategy which is oriented at single-step inner loops

similar to EvoGrad.

Theoretically it is also possible to use hypernetworks (Lorraine and Duvenaud, 2018)

to find good hyperparameters in a first-order way. Hypernetworks take hyperparameters

as inputs and generate model parameters. However, the approach is not commonly used,

likely due to the difficulty of generating well-performing model parameters. We provide

experimental results to support this hypothesis in Appendix A.
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Meta-learning can be categorized into several groups, depending on the type of

meta-knowledge and also if the model is trained from scratch as part of the inner loop

(Hospedales et al., 2021). Offline meta-learning approaches train a model from scratch

per each update of the meta-knowledge, while online meta-learning approaches train

the model and meta-knowledge jointly. As a result, offline meta-learning is extremely

expensive (Cubuk et al., 2019; Zoph and Le, 2017) when scaled beyond few-shot

learning problems where only a few iterations are sufficient for training (Finn et al.,

2017; Antoniou et al., 2019; Li et al., 2017). Therefore most larger-scale problems (Liu

et al., 2019a; Jaderberg et al., 2019; Tseng et al., 2020; Xia et al., 2021) use online

learning in practice, and this is where we focus our contribution.

The meta-knowledge to learn can take different forms. A particular dichotomy is

between the special case where the meta-knowledge corresponds to the base model

itself, in the form of an initialization; and the more general cases where it does not.

The former initialization meta-learning has been popularized by MAML (Finn et al.,

2017), and is widely used in few-shot learning. This can be solved relatively efficiently,

for example using a first-order approximation of MAML (Finn et al., 2017), Reptile

(Nichol et al., 2018) or minibatch proximal update (Zhou et al., 2019).

On the other hand, there are vastly more cases (Hospedales et al., 2021) where the

meta-knowledge is different from the model itself, such as LFT’s stochastic regularizer

to improve cross-domain generalization (Tseng et al., 2020), MWN’s instance-wise

loss weighting network for label noise robustness (Shu et al., 2019), a label generation

network to improve self-supervised generalization (Liu et al., 2019c), a Feature-Critic

loss to improve domain generalization (Li et al., 2019b) and many others. In this

more general case, most applications rely on a T1−T2-like algorithm, as the efficient

approximations specific to MAML do not apply. The ability to significantly improve the

efficiency of gradient-based meta-learning would have a large impact as methods like

these would directly benefit from it in runtime and energy consumption. More crucially,

they could scale to bigger and more state-of-the-art neural network architectures.

3.3 Methodology

3.3.1 Background: Meta-Learning as Bilevel Optimization

We aim to solve a bilevel optimization problem where our goal is to find hyperparameters

ω that minimize the validation loss ℓV of the model parametrized by θ and trained with
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Figure 3.1: Graphical illustration of a single EvoGrad update using K = 2 model copies.

loss ℓT and ω:

ω
∗ = argmin

ω

ℓ∗V (ω), where ℓ∗V (ω) = ℓV (ω,θ
∗(ω)) and θ

∗(ω) = argmin
θ

ℓT (ω,θ).

(3.1)

In order to meta-learn the value of ω using gradient-based methods, we need to

calculate the hypergradient ∂ℓV
∂ω

. We can expand its calculation as follows:

∂ℓ∗V (ω)

∂ω
=

∂ℓV (ω,θ
∗(ω))

∂ω
+

∂ℓV (ω,θ
∗(ω))

∂θ∗(ω)

∂θ∗(ω)

∂ω
. (3.2)

In meta-learning and hyperparameter optimization more broadly, the direct term
∂ℓV (ω,θ

∗(ω))
∂ω

is typically zero because the hyperparameter does not directly influence

the value of the validation loss – it influences it via the impact on the model weights

θ. However, the model weights θ are themselves trained using gradient optimization,

which gives rise to higher-order derivatives. We propose a variation on this step where

the update of the model weights is inspired by evolutionary methods, allowing us to

eliminate the need for higher-order derivatives. We consider the setting where the

hypergradient of hyperparameter ω is estimated online (Luketina et al., 2016) together

with updating the base model θ, as this is the most widely used setting in substantial

practical applications (Shu et al., 2019; Tseng et al., 2020; Li et al., 2019b; Balaji et al.,

2018; Bohdal et al., 2020; Shan et al., 2020; Liu et al., 2019a; Xia et al., 2021).

3.3.2 The EvoGrad Update

Given the current model parameters θ ∈ RM, hyperparameters ω ∈ RN , training loss ℓT

and validation loss ℓV , we aim to estimate ∂ℓV
∂ω

for efficient gradient-based hyperparame-
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ter learning. The key idea is – solely for the purpose of hypergradient estimation – to

consider a simple evolutionary rather than gradient-based inner-loop step on θ.

Evolutionary Inner Step First, we sample random perturbations ε ∈RM ∼N (0,σI),

and apply them to θ. Sampling K perturbations, we can create a population of K variants

{θk}K
k=1 of the current model as θk = θ+ εk. We can now compute the training losses

{ℓk}K
k=1 for each of the K models, ℓk = f (DT |θk,ω) using the current minibatch DT

drawn from the training set. Given these loss values, we can calculate the weights

(sometimes called fitness) of the population of candidate models as

w1,w2, . . . ,wK = softmax([−ℓ1,−ℓ2, . . . ,−ℓK]/τ), (3.3)

where τ is a temperature parameter that rescales the losses to control the scale of weight

variability.

Given the weights {wk}K
k=1, we complete the current step of evolutionary learning

by updating the model parameters via the affine combination

θ
∗ = w1θ1 +w2θ2 + · · ·+wKθK. (3.4)

Computing the Hypergradient We now evaluate the updated model θ∗ for a mini-

batch from the validation set DV and take gradient of the validation loss ℓV = f (DV |θ∗)
w.r.t. the hyperparameter:

∂ℓV

∂ω
=

∂ f (DV |θ∗)
∂ω

(3.5)

One can easily verify that the computation in Eq. 3.5 does not involve second-order

gradients as no first-order gradients were used in the inner loop. This is in contrast to

the typical approach (Luketina et al., 2016; Maclaurin et al., 2015) of applying gradient-

based updates in the inner loop and differentiating through it (in either forward-mode or

reverse-mode), or even applying the implicit function theorem (IFT) (Lorraine et al.,

2020), all of which trigger higher-order gradients and an extended computation graph.

Algorithm Flow In practice we follow the flow of T1−T2 (Luketina et al., 2016) used

by many substantive applications (Tseng et al., 2020; Shu et al., 2019; Balaji et al.,

2018; Liu et al., 2019a; Xia et al., 2021). We take alternating steps on θ using the exact

gradient ∂ℓT
∂θ

, and on ω using the hypergradient ∂ℓV
∂ω

, which in EvoGrad is estimated as

in Eq. 3.5.
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3.3.3 EvoGrad Hypergradient as a Random Projection

To understand EvoGrad, observe that the hyper-gradient in Eq. 3.5 expands as

∂ℓV

∂ω
=

∂ℓV

∂θ∗
∂θ∗

∂ω
=

∂ℓV

∂θ∗
E

∂w
∂ω

=
∂ℓV

∂θ∗
E

∂w
∂ℓ

∂ℓ

∂ω
, (3.6)

where E = [ε1,ε2, . . . ,εK] is the M×K matrix formed by stacking εk’s as columns,

w is the K-dimensional (w = [w1,w2, . . . ,wK]) vector of candidate model weights, and

ℓ= [ℓ1, ℓ2, . . . , ℓK] is the K-dimensional vector of candidate model losses.

Recall that E is a random matrix, so the operation ∂ℓV
∂θ∗E can be understood as ran-

domly projecting the M-dimensional validation loss’ gradient to a new low-dimensional

space of dimension K≪M. Alternatively, we can interpret the update as factorising

the model-parameter-to-hyperparameter derivative ∂θ∗

∂ω
(sized M×N) into two much

smaller matrices E and ∂w
∂ω

of size M×K and K×N.

In terms of implementation, ∂ℓV
∂θ∗ is obtained by backpropagation and E is sampled

on the fly. The term ∂w
∂ω

= ∂w
∂ℓ

∂ℓ
∂ω

is computed by the softmax-to-logit derivative (K×K)

and the derivative of the K candidate models training losses w.r.t. hyperparameters. It is

noteworthy that the K elements of ∂ℓ
∂ω

are completely independent, and can be computed

in parallel where multiple GPUs are available.

3.3.4 Comparison to Other Methods

We compare EvoGrad to the most related and widely-used alternative T1−T2 (Luketina

et al., 2016) in Table 3.1. T1−T2 requires higher-order gradients and associated longer

computational graphs – due to the need to backpropagate through gradient nodes.

This leads to increased memory and time cost compared to vanilla backpropagation.

In contrast, EvoGrad requires no higher-order gradients, no large matrices, and no

substantial expansion of the computational graph.

Table 3.1: Comparison of hypergradient approximations of T1−T2 and EvoGrad.

Method Hypergradient approximation

T1−T2 (Luketina et al., 2016) ∂ℓV
∂ω
− ∂ℓV

∂θ
× I ∂2ℓT

∂θ∂ωT

EvoGrad (ours) ∂ℓV
∂ω

+ ∂ℓV
∂θ
×E ∂w

∂ℓ
∂ℓ
∂ω

= ∂ℓV
∂ω

+ ∂ℓV
∂θ
×E ∂softmax(−ℓ)

∂ω

We analyse the asymptotic big-O time and memory requirements of EvoGrad

vs T1− T2 in Table 3.2. The dominant cost in terms of both memory and time is
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the cost of backpropagation. Backpropagation is significantly more expensive than

forward propagation because forward propagation does not need to store all intermediate

variables in memory (Rajeswaran et al., 2019; Griewank, 1993). Note that even if

EvoGrad keeps multiple copies of the model weights in memory, this cost is small

compared to the cost of backpropagation, and the latter is done with only one set of

weights θ∗. We remark that our main empirical results are obtained with only K = 2

models, so we can safely ignore this in our asymptotic analysis.

In addition, we elaborate on how higher-order gradients contribute to increased

memory and time costs. Results from computing the first-order gradients are added

into the computation graph as new nodes in the graph so that we can calculate the

higher-order gradients. When calculating the higher-order gradients, we backpropagate

through this longer computational graph, which directly increases the memory and

time costs. The current techniques (Luketina et al., 2016) rely on longer computational

graphs, while EvoGrad significantly shortens the graph and reduces memory cost by

avoiding this step. This consideration is not visible in the big-O analysis, but contributes

to improved efficiency.

Table 3.2: Comparison of asymptotic memory and operation requirements of EvoGrad

and T1−T2 meta-learning strategies. P is the number of model parameters, H is the

number of hyperparameters. K≪ H is the number of model copies in EvoGrad. Note

this is a first-principles analysis, so the time requirements are different when using e.g.

reverse-mode backpropagation that uses parallelization.

Method Time requirements Memory requirements

T1−T2 (Luketina et al., 2016) O(PH) O(P+H)

EvoGrad (ours) O(KP+H) O(P+H)

3.4 Experiments

We first consider two simple problems: 1) a 1-dimensional problem where we try to

find the minimum of a function, and 2) meta-learning a feature-transformer to find

the rotation that correctly aligns images whose training and validation sets differ in

rotation. This serves as a proof-of-concept problem to show our method is capable of

meta-learning suitable hyperparameters. We then consider three real problems where
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meta-learning has been used to solve different learning challenges. We show that

EvoGrad makes a significant impact in terms of reducing the memory and time costs

(while keeping the accuracy improvements brought by meta-learning): 3) Cross-domain

few-shot classification via learned feature-wise transformation (Tseng et al., 2020),

4) Meta-Weight-Net: learning an explicit mapping for sample weighting (Shu et al.,

2019), 5) MetaXL: meta representation transformation for low-resource cross-lingual

learning (Xia et al., 2021). We provide a brief overview of each problem, together

with evaluation and analysis. Further details and experimental settings are described in

Appendix A.

3.4.1 Illustration Using a 1-Dimensional Problem

In this problem we minimize a validation loss function fV (x) = (x− 0.5)2 where

parameter x is optimized using SGD with training loss function fT (x) = (x− 1)2 +

ω∥x∥2
2 that includes a meta-parameter ω. A closed-form solution for the hypergradient

is available and is equal to g(ω) = (ω− 1)/(ω+ 1)3, which allows us to compare

EvoGrad against the ground-truth gradient.

Our first analysis studies the estimated EvoGrad hypergradient for a grid of ω

values between 0 and 2. For each value of ω we show the mean and standard deviation

of the estimated ∂ fV/∂ω over 100 repetitions (with random choice of x). We use

temperature τ = 0.5, ε ∈ R∼N (0,1) and consider between 2 and 100 models copies

in the population. The results in Figure 3.2 show that EvoGrad estimates have a similar

trend to the ground-truth gradient, even if the EvoGrad estimates are noisy. The level

of noise decreases with more models in the population, but the correct trend is visible

even if we use only 2 models.
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Figure 3.2: Comparison of the hypergradient ∂ fV/∂ω estimated by EvoGrad vs the

ground-truth.
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Our second analysis studies the trajectories that parameters x,ω follow if they are

both optimized online using SGD with learning rate of 0.1 for 5 steps, starting from five

different positions (circles). The hypergradients are either estimated using EvoGrad

or directly using the ground-truth formula. Figure 3.3 shows that the trajectories of

both variations are similar, and they become more similar as we use more models in the

population. In all cases the parameters converge towards the lightly-coloured region

where the validation loss is the lowest at x = 0.5.
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Figure 3.3: Trajectories of parameters x,ω when following ∂ fT/∂x and ∂ fV/∂ω using

SGD for 5 random starting positions. Comparison of trajectories using EvoGrad es-

timated (blue) or ground-truth (red) hypergradient. The initial position is marked with

a circle, and the final position after 5 steps is marked with a cross. The shading is

validation loss fV (x).

3.4.2 Rotation Transformation

In this task we work with MNIST images (LeCun et al., 1998), and assume that the

validation and test sets are rotated by 30◦ compared to the conventionally oriented

training images. Clearly, directly training a model and applying it will lead to low

performance. We therefore assume meta-knowledge in the form of a hidden rotation.

The rotation transformation is applied to the training images before learning, and should

itself be meta-learned by the validation loss obtained by the CNN trained on the rotated

training set. Thus solving the meta-learning problem should result in a 30◦ rotation, and

a base CNN that generalizes to the rotated validation set.

The problem is framed as online meta-learning where each update of the base model

is followed by a meta-parameter update using EvoGrad. We use EvoGrad with 2 model

copies, temperature τ = 0.05 and σ = 0.001 for ε∼ σsign(N (0, I)). Our LeNet (LeCun

et al., 1989) base model is trained for 5 epochs.

We repeat the experiments 5 times and show a comparison of the results in Table

3.3. A baseline model achieves 98.40± 0.07% accuracy if the test images are not
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rotated, but its accuracy drops to 81.79±0.64% if the same images are rotated by 30◦.

A model trained with EvoGrad and the rotation transformer is able to accurately classify

rotated images, with a similar accuracy as the baseline model can classify unrotated

images. This confirms we can successfully optimize hyperparameters with EvoGrad.

The meta-learned rotation is also close to the true value.

Table 3.3: Rotation transformation learning. The goal is to accurately classify MNIST test

images rotated by 30◦ degrees compared to the training set orientation. Test accuracies

(%) of a baseline model, and one whose training set has been rotated by the EvoGrad’s

meta-learned rotation, and associated EvoGrad rotation estimate (◦). Accuracy for

rotation matched train/test sets is 98.40%.

True Rotation Baseline Acc. EvoGrad Acc. EvoGrad Rotation Est.

30◦ 81.79 ± 0.64 98.11 ± 0.32 28.47◦ ± 5.23◦

3.4.3 Cross-Domain Few-Shot Classification via Learned Feature-

Wise Transformation

As the next task we consider cross-domain few-shot classification (CD-FSL). CD-

FSL is considered an important and highly challenging problem at the forefront of

computer vision. The state-of-the-art approach learned feature-wise transformation

(LFT) (Tseng et al., 2020) aims to meta-learn stochastic feature-wise transformation

layers that regularize metric-based few-shot learners to improve their few-shot learning

generalization in cross-domain conditions. The method includes two key steps: 1)

updating the model with the meta-parameters on a pseudo-seen task and 2) updating the

meta-parameters by evaluating the model on a pseudo-unseen task by backpropagating

through the first step. As feature-wise transformation is not directly used for the

pseudo-unseen task, this leads to higher-order gradients. Note that the problem itself is

memory-intensive because we work with larger images of size 224×224 within episodic

learning tasks. As a result, a significantly more efficient meta-learning approach could

allow us to scale from the ResNet10 model used in the paper to a larger model.

We experiment with the LFT-RelationNet (Sung et al., 2018) metric-based few-shot

learner and consider the exact same experiment settings as (Tseng et al., 2020) using

the official PyTorch implementation associated with the paper. LFT introduces 3712
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hyperparameters to train for ResNet10, and 9344 for ResNet34. All our experiments

are conducted on Titan X GPUs with 12GB of memory using K = 2 for EvoGrad.

Table 3.4 shows the baseline performance of vanilla unregularised ResNet (-),

manually tuned FT layers (FT), FT layers meta-learned by second-order gradient (LFT)

and by EvoGrad. The results show that EvoGrad matches the accuracy of the original

LFT approach, leading to clear accuracy improvements over training with no feature-

wise transformation or training with fixed feature-wise parameters selected manually.

At the same time EvoGrad is significantly more efficient in terms of the memory and

time costs as shown in Figure 3.4. The memory improvements from EvoGrad allow

us to scale the base feature extractor to ResNet34 within the standard 12GB GPU. The

original LFT with its T1−T2 style second-order algorithm cannot be extended in the

available memory if we keep the same settings of the few-shot learning tasks. Thus,

we are able to improve state-of-the-art accuracy on both 5-way 1 and 5-shot tasks.

For ResNet34, we include baselines without any feature-wise transformation and with

manually chosen feature-wise transformation to confirm the benefit of meta-learning.
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Figure 3.4: Cross-domain few-shot learning with LFT (Tseng et al., 2020): analysis of

memory and time efficiency of EvoGrad vs standard second-order T1−T2 approach.

Mean and standard deviation reported across experiments with different test datasets.

EvoGrad is significantly more efficient in terms of both memory usage and time per

epoch.

3.4.4 Label Noise with Meta-Weight-Net

We consider a further highly practical real problem where online meta-learning has led

to significant improvements – learning from noisy labelled data. The Meta-Weight-

Net framework trains an auxiliary neural network that performs instance-wise loss

re-weighting on the training set (Shu et al., 2019). The base model is updated using

the sum of weighted instance-wise losses for noisy data, while the Meta-Weight-Net
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Table 3.4: RelationNet test accuracies (%) and 95% confidence intervals across test

tasks on various unseen datasets. LFT EvoGrad can scale to ResNet34 on all tasks

within 12GB GPU memory, while vanilla second-order LFT T1−T2 cannot. We also

report the results of our own rerun of the LFT approach using the official code – denoted

as our run. EvoGrad can clearly match the accuracies obtained by the original approach

that uses T1−T2.

Model Approach CUB Cars Places Plantae

5-
w

ay
1-

sh
ot ResNet10

- 44.33 ± 0.59 29.53 ± 0.45 47.76 ± 0.63 33.76 ± 0.52

FT 44.67 ± 0.58 30.38 ± 0.47 48.40 ± 0.64 35.40 ± 0.53

LFT T1−T2 48.38 ± 0.63 32.21 ± 0.51 50.74 ± 0.66 35.00 ± 0.52

LFT T1−T2 (our run) 46.03 ± 0.60 31.50 ± 0.49 49.29 ± 0.65 36.34 ± 0.59

LFT EvoGrad 47.39 ± 0.61 32.51 ± 0.56 50.70 ± 0.66 36.00 ± 0.56

ResNet34

- 45.61 ± 0.59 29.54 ± 0.46 48.87 ± 0.65 35.03 ± 0.54

FT 45.15 ± 0.59 30.28 ± 0.44 49.96 ± 0.66 35.69 ± 0.54

LFT EvoGrad 45.97 ± 0.60 33.21 ± 0.54 50.76 ± 0.67 38.23 ± 0.58

5-
w

ay
5-

sh
ot

ResNet10

- 62.13 ± 0.74 40.64 ± 0.54 64.34 ± 0.57 46.29 ± 0.56

FT 63.64 ± 0.77 42.24 ± 0.57 65.42 ± 0.58 47.81 ± 0.51

LFT T1−T2 64.99 ± 0.54 43.44 ± 0.59 67.35 ± 0.54 50.39 ± 0.52

LFT T1−T2 (our run) 65.94 ± 0.56 43.88 ± 0.56 65.57 ± 0.57 51.43 ± 0.55

LFT EvoGrad 64.63 ± 0.56 42.64 ± 0.58 66.54 ± 0.57 52.92 ± 0.57

ResNet34

- 63.33 ± 0.59 40.50 ± 0.55 64.94 ± 0.56 50.20 ± 0.55

FT 62.48 ± 0.56 41.06 ± 0.52 64.39 ± 0.57 50.08 ± 0.55

LFT EvoGrad 66.40 ± 0.56 44.25 ± 0.55 67.23 ± 0.56 52.47 ± 0.56

itself is updated by evaluating the updated model on clean validation data and by

backpropagating through the model update. We use the official implementation of the

approach (Shu et al., 2019) and follow the same experimental settings, using K = 2 for

EvoGrad.

Our results in Table 3.5 confirm we replicate the benefits of training with Meta-

Weight-Net, clearly surpassing the accuracy of the baseline when there is label noise.

We also note that EvoGrad can improve the accuracy over the T1−T2-based approach

because the two approaches are distinct and provide different estimates of the true

hypergradient. Figure 3.5 shows that our method leads to significant improvements in

memory and time costs (over half of the memory is saved and the runtime is improved

by about a third).
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Table 3.5: Test accuracies (%) for Meta-Weight-Net label noise experiments with ResNet-

32 – means and standard deviations across 5 repetitions for the original second-order

algorithm vs EvoGrad. EvoGrad is able to match or even exceed the accuracies obtained

by the original MWN approach.

Dataset Noise rate Baseline MWN T1−T2 MWN T1−T2 (our run) MWN EvoGrad

0% 92.89 ± 0.32 92.04 ± 0.15 91.10 ± 0.19 92.02 ± 0.31

CIFAR-10 20% 76.83 ± 2.30 90.33 ± 0.61 89.31 ± 0.40 89.86 ± 0.64

40% 70.77 ± 2.31 87.54 ± 0.23 85.90 ± 0.45 87.74 ± 0.54

0% 70.50 ± 0.12 70.11 ± 0.33 68.42 ± 0.36 69.16 ± 0.49

CIFAR-100 20% 50.86 ± 0.27 64.22 ± 0.28 63.43 ± 0.43 64.05 ± 0.63

40% 43.01 ± 1.16 58.64 ± 0.47 56.54 ± 0.90 57.44 ± 1.25
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Figure 3.5: Analysis of memory and time cost of MWN EvoGrad vs the original second-

order MWN, showing significant efficiency improvements by EvoGrad. Mean and stan-

dard deviation is reported across 5 repetitions of 40% label noise problem.

3.4.5 Low-Resource Cross-Lingual Learning with MetaXL

The previous two real applications of meta-learning considered computer vision prob-

lems. To highlight EvoGrad is a general method that can make an impact in any

domain, we also demonstrate its benefits on a meta-learning application from NLP.

More specifically, we use EvoGrad for MetaXL (Xia et al., 2021), which meta-learns

meta representation transformation to better transfer from source languages to low-

resource target languages.

We have selected the named entity recognition (NER) task with English source

language (WikiAnn dataset (Pan et al., 2017)), which is one of the key experiments in

the MetaXL paper (Xia et al., 2021). Table 3.6 shows EvoGrad matches and in fact

surpasses the average test F1 score of MetaXL with the original T1−T2 meta-learning

method. Figure 3.6 shows EvoGrad significantly improves both memory and time
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consumption compared to MetaXL T1−T2. Overall these results confirm EvoGrad is

suitable for meta-learning in various domains, including both computer vision and NLP.

Table 3.6: Test F1 score in % for named entity recognition task. English source language.

The first two rows are taken from the MetaXL paper, while our own runs are in the

following rows. EvoGrad clearly matches and even surpasses the performance of

T1−T2 baseline. Joint-training (JT) represents a simple non-meta-learning baseline.

Method qu cdo ilo xmf mhr mi tk gn Average

JT 66.10 55.83 80.77 69.32 71.11 82.29 61.61 65.44 69.06

MetaXL T1−T2 68.67 55.97 77.57 73.73 68.16 88.56 66.99 69.37 71.13

JT (our run) 59.75 49.19 79.43 68.85 68.42 89.94 61.90 69.44 68.37

MetaXL T1−T2 (our run) 65.29 56.33 76.50 67.24 71.17 89.41 66.67 64.11 69.59

MetaXL EvoGrad 71.00 57.02 85.99 70.40 65.45 88.12 66.97 70.91 71.98
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Figure 3.6: Analysis of memory and time cost of MetaXL EvoGrad vs the original second-

order MetaXL, in the context of a simple joint-training (JT) baseline. EvoGrad consumes

significantly less memory than T1−T2 and is faster. Mean and standard deviation is

calculated over the 8 different target languages.

3.4.6 Scalability Analysis

We use the Meta-Weight-Net benchmark to study how the number of model parameters

affects the memory usage and training time of EvoGrad, comparing it to the standard

second-order T1−T2 approach. We vary model size by changing the number of filters

in the original ResNet32 model, multiplying the filter number ×1, . . . ,×5. The smallest

model had around 0.5M parameters and the largest one around 11M parameters.

The results in Figure 3.7 show our EvoGrad leads to significantly lower training time

and memory usage, and that the margin over the standard second-order optimizer grows

as the model becomes larger. Further, we have analysed the impact of modifying the
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number of hyperparameters – from 300 up to 30,000. The impact on memory and time

was negligible, and both remained roughly constant, which is caused by the main model

being significantly larger. It is also because of the fact that reverse-mode differentiation

costs scale with the number of model parameters rather than hyperparameters (Micaelli

and Storkey, 2020) – recall that backpropagation is the main driver of memory and time

costs (Rajeswaran et al., 2019). Moreover, we have done experiments that varied the

number of model copies in EvoGrad. The results showed the training time per epoch

increased slightly, while the memory costs remained similar.
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Figure 3.7: Memory and time scaling of MWN EvoGrad vs original second-order Meta-

Weight-Net. Efficiency margins of EvoGrad are larger for larger models.

3.5 Discussion

Similar to many other gradient-based meta-learning methods, our method is greedy as

it does not consider the whole training process when updating the hyperparameters.

However, this greediness allows the method to be used in larger-scale settings where

we train the hyperparameters and the model jointly. Further, our method approximates

the hypergradient stochastically. While results were good for the suite of problems

considered here using only K = 2, the gradient estimates may be too noisy in other

applications. Alternatively, it may necessitate using a larger model population (Fig-

ure 3.2). While as we observed in Section 3.3.3 the candidate models can be trivially

parallelized to scale population size, this still imposes a larger energy cost (Schwartz

et al., 2019). Another limitation is that similarly to IFT-based estimators (Lorraine et al.,

2020), EvoGrad is not suitable for optimizing learner hyperparameters such as learning

rate. Currently we have used the simplest possible evolutionary update in the inner loop,

and upgrading EvoGrad to a state-of-the-art evolutionary strategy may lead to better

gradient estimates and improve results further.
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3.6 Further Developments

Since publishing EvoGrad, there have been various developments in the area of gradient-

based meta-learning (GBML). In multiple cases, EvoGrad has been utilized or refer-

enced as an efficient meta-learning method. For example, our EvoGrad approach has

been used by Prakash et al. (2023) to obtain hypergradients as part of a newly proposed

first-order Bayesian Optimization algorithm. EvoGrad has also been mentioned in

surveys focused on bilevel optimization and few-shot learning (Chen et al., 2022; Song

et al., 2023).

Additionally there have been a number of papers where EvoGrad was included in

the related work, for example (Wang et al., 2022b; Chen et al., 2023a,b; Wang et al.,

2023a, 2024). These papers cover a diverse set of problems, showing EvoGrad is

practically relevant in many scenarios. More specifically, Wang et al. (2022b) develop

a method that meta-learns a model initialization from pre-trained models without

data. Chen et al. (2023a) propose a method for biological sequence design, while

Chen et al. (2023b) propose a meta-weighting strategy for long-tailed dynamic scene

graph generation. Further, Wang et al. (2023a) also take inspiration from evolutionary

algorithms and propose a meta-learning method for reinforcement learning. Wang et al.

(2024) introduce a meta-learning framework for diagnosis of diabetic retinopathy. The

diversity of these use-cases highlights the wide relevance of our EvoGrad approach.

The broader field of GBML has also seen a variety of further developments. A

number of libraries have been released to make meta-learning more scalable, especially

by supporting distributed training across multiple GPUs. These libraries include Betty

(Choe et al., 2023b) and TorchOpt (Ren et al., 2023). SAMA approach (Choe et al.,

2023a) is also one of the most recent GBML approaches that includes support for

distributed training, and it avoids the computation of second-order gradients by utilizing

central finite difference, which was part of (Liu et al., 2019a). Other recent first-order

bilevel optimization methods include (Liu et al., 2022; Kwon et al., 2023). Implicit

GBML methods have also seen improvements, most notably by utilizing the Nyström

method, leading to more accurate and scalable implicit differentiation (Hataya and

Yamada, 2023). New applications of GBML have also been proposed, for example

optimization of data augmentation (Hataya et al., 2022) and task-aware continued

pre-training (Dery et al., 2022).
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3.7 Conclusions

We have proposed a new efficient method for meta-learning that allows us to scale

gradient-based meta-learning to bigger models and problems. We have evaluated the

method on a variety of problems, most notably meta-learning feature-wise transforma-

tion layers, training with noisy labels using Meta-Weight-Net, and meta-learning meta

representation transformation for low-resource cross-lingual learning. In all cases we

have shown significant time and memory efficiency improvements, while achieving

similar or better performance compared to the existing meta-learning methods.

∗∗∗

EvoGrad gives us a way to efficiently optimize a large number of meta-parameters,

under the assumption they are differentiable and influence the loss function. It is

a gradient-based method, but gradient-free approaches for meta-learning also exist

and are widely used. Multi-fidelity hyperparameter optimization methods are one

popular example. While they are suitable only for optimizing a smaller number of

meta-parameters, they can also optimize meta-parameters that do not directly influence

the loss function (e.g. learning rate) or are not differentiable. This means EvoGrad

would not be suitable for many of the cases for which multi-fidelity methods are often

used. The efficiency of multi-fidelity methods can also be significantly improved, which

is our focus in the next chapter that introduces our PASHA algorithm.



Chapter 4

PASHA: Efficient Hyperparameter
Optimization

The content of this chapter corresponds to paper:

PASHA: Efficient HPO and NAS with Progressive Resource Allocation
Ondrej Bohdal, Lukas Balles, Martin Wistuba, Beyza Ermis, Cedric Archambeau,

Giovanni Zappella

The Eleventh International Conference on Learning Representations (ICLR),

2023

Hyperparameter optimization (HPO) and neural architecture search (NAS) are

methods of choice to obtain the best-in-class machine learning models, but in practice

they can be costly to run. When models are trained on large datasets, tuning them with

HPO or NAS rapidly becomes prohibitively expensive for practitioners, even when

efficient multi-fidelity methods are employed. We propose an approach to tackle the

challenge of tuning machine learning models trained on large datasets with limited

computational resources. Our approach, named PASHA, extends ASHA and is able

to dynamically allocate maximum resources for the tuning procedure depending on

the need. The experimental comparison shows that PASHA identifies well-performing

hyperparameter configurations and architectures while consuming significantly fewer

computational resources than ASHA.

48
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4.1 Introduction

Hyperparameter optimization (HPO) and neural architecture search (NAS) yield state-

of-the-art models, but often are a very costly endeavor, especially when working with

large datasets and models. For example, using the results of (Sharir et al., 2020) we can

estimate that evaluating 50 configurations for a 340-million-parameter BERT model

(Devlin et al., 2019) on the 15GB Wikipedia and Book corpora would cost around

$500,000. To make HPO and NAS more efficient, researchers explored how we can

learn from cheaper evaluations (e.g. on a subset of the data) to later allocate more

resources only to promising configurations. This created a family of methods often

described as multi-fidelity methods. Two well-known algorithms in this family are

Successive Halving (SH) (Jamieson and Talwalkar, 2016; Karnin et al., 2013) and

Hyperband (HB) (Li et al., 2018b).

Multi-fidelity methods significantly lower the cost of the tuning. Li et al. (2018b)

reported speedups up to 30x compared to standard Bayesian Optimization (BO) and

up to 70x compared to random search. Unfortunately, the cost of current multi-fidelity

methods is still too high for many practitioners, also because of the large datasets used

for training the models. As a workaround, they need to design heuristics which can

select a set of hyperparameters or an architecture with a cost comparable to training a

single configuration, for example, by training the model with multiple configurations

for a single epoch and then selecting the best-performing candidate.

On one hand, such heuristics lack robustness and need to be adapted to the specific

use-cases in order to provide good results. On the other hand, they build on an extensive

amount of practical experience suggesting that multi-fidelity methods are often not

sufficiently aggressive in leveraging early performance measurements and that iden-

tifying the best performing set of hyperparameters (or the best architecture) does not

require training a model until convergence. For example, Bornschein et al. (2020) show

that it is possible to find the best hyperparameter – number of channels in ResNet-101

architecture (He et al., 2016) for ImageNet (Deng et al., 2009) – using only one tenth of

the data. However, it is not known beforehand that one tenth of data is sufficient for the

given task.

Our aim is to design a method that consumes fewer resources than standard multi-

fidelity algorithms such as Hyperband (Li et al., 2018b) or ASHA (Li et al., 2020a),

and yet is able to identify configurations that produce models with a similar predictive

performance after full retraining from scratch. Models are commonly retrained on
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a combination of training and validation sets to obtain the best performance after

optimizing the hyperparameters. To achieve the speedup, we propose a variant of

ASHA, called Progressive ASHA (PASHA), that starts with a small amount of initial

maximum resources and gradually increases them as needed. ASHA in contrast has

a fixed amount of maximum resources, which is a hyperparameter defined by the

user and is difficult to select. Our empirical evaluation shows PASHA can save a

significant amount of resources while finding similarly well-performing configurations

as conventional ASHA, reducing the entry barrier to do HPO and NAS.

To summarize, our contributions are as follows: 1) We introduce a new approach

called PASHA that dynamically selects the amount of maximum resources to allocate for

HPO or NAS (up to a certain budget), 2) Our empirical evaluation shows the approach

significantly speeds up HPO and NAS without sacrificing the performance, and 3) We

show the approach can be successfully combined with sample-efficient strategies based

on Bayesian Optimization, highlighting the generality of our approach.

Our implementation is based on the Syne Tune library (Salinas et al., 2022) and

PASHA is included there. Code with additional explanations and notebooks for PASHA

is provided at https://github.com/ondrejbohdal/pasha.

4.2 Related Work

Real-world machine learning systems often rely on a large number of hyperparameters

and require testing many combinations to identify suitable values. This makes data-

inefficient techniques such as Grid Search or Random Search (Bergstra and Bengio,

2012) very expensive in most practical scenarios. Various approaches have been

proposed to find good parameters more quickly, and they can be classified into two

main families: 1) Bayesian Optimization: evaluates the most promising configurations

by modelling their performance. The methods are sample-efficient but often designed

for environments with limited amount of parallelism; 2) Multi-fidelity: sequentially

allocates more resources to configurations with better performance and allows high

level of parallelism during the tuning. Multi-fidelity methods have typically been faster

when run at scale and will be the focus of this work. Ideas from these two families can

also be combined together, for example as done in BOHB by Falkner et al. (2018), and

we will test a similar method in our experiments.

Successive Halving (SH) (Karnin et al., 2013; Jamieson and Talwalkar, 2016) is

conceptually the simplest multi-fidelity method. Its key idea is to run all configurations

https://github.com/ondrejbohdal/pasha
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using a small amount of resources and then successively promote only a fraction

of the most promising configurations to be trained using more resources. Another

popular multi-fidelity method, called Hyperband (Li et al., 2018b), performs SH with

different early schedules and number of candidate configurations. ASHA (Li et al.,

2020a) extends the simple and very efficient idea of successive halving by introducing

asynchronous evaluation of different configurations, which leads to further practical

speedups thanks to better utilisation of workers in a parallel setting.

Related to the problem of efficiency in HPO, cost-aware HPO explicitly accounts

for the cost of the evaluations of different configurations. Previous work on cost-aware

HPO for multi-fidelity algorithms such as CAHB (Ivkin et al., 2021) keeps a tight

control on the budget spent during the HPO process. This is different from our work, as

we reduce the budget spent by terminating the HPO procedure early instead of allocating

the compute budget in its entirety. Moreover, PASHA could be combined with CAHB

to leverage the cost-based resources allocation.

Recently, researchers considered dataset subsampling to speedup HPO and NAS.

Shim et al. (2021) have combined coresets with PC-DARTS (Xu et al., 2020) and showed

that they can find well-performing architectures using only 10% of the data and 8.8x less

search time. Similarly, Visalpara et al. (2021) have combined subset selection methods

with the Tree-structured Parzen Estimator (TPE) for HPO (Bergstra et al., 2011). With

a 5% subset they obtained between an 8x to 10x speedup compared to standard TPE.

However, in both cases it is difficult to say in advance what subsampling ratio to use.

For example, the 10% ratio in (Shim et al., 2021) incurs no decrease in accuracy, while

reducing further to 2% leads to a substantial (2.6%) drop in accuracy. In practice, it

is difficult to find a trade-off between the time required for tuning (proportional to

the subset size) and the loss of performance for the final model because these change,

sometimes wildly, between datasets. Further, Zhou et al. (2020a) have observed that for

a fixed number of iterations, rank consistency is better if we use more training samples

and fewer epochs rather than fewer training samples and more epochs. This observation

gives further motivation for using the whole dataset for HPO/NAS and design new

approaches, like PASHA, to save computational resources.

4.3 Problem Setup

The problem of selecting the best configuration of a machine learning algorithm to

be trained is formalized in (Jamieson and Talwalkar, 2016) as a non-stochastic bandit
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problem. In this setting the learner (the hyperparameter optimizer) receives N hyperpa-

rameter configurations and it has to identify the best performing one with the constraint

of not spending more than a fixed amount of resources R (e.g. total number of training

epochs) on a specific configuration. R is considered given, but in practice users do not

have a good way for selecting it, which can have undesirable consequences: if the value

is too small, the model performance will be sub-optimal, while if the budget is too

large, the user will incur a significant cost without any practical return. This leads users

to overestimate R, setting it to a large amount of resources in order to guarantee the

convergence of the model. We maintain the concept of maximum amount of resources

in our algorithm but we prefer to interpret R as a “safety net”, a cost not to be surpassed

(e.g. in case an error prevents a normal behaviour of the algorithm), instead of the exact

amount of resources spent for the optimization.

This setting could be extended with additional assumptions, based on empirical

observation, removing some extreme cases and leading to a more practical setup. In

particular, when working with large datasets we observe that the curve of the loss

for configurations (called arms in the bandit literature) continuously decreases (in

expectation). Moreover, “crossing points” between the curves are rare (excluding noise),

and they are almost always in the very initial part of the training procedure. Viering and

Loog (2021); Mohr and van Rijn (2022) provide an analysis of learning curves and note

that in practice most learning curves are well-behaved, with Bornschein et al. (2020);

Domhan et al. (2015) reporting similar findings.

More formally, let us define R as the maximum number of resources needed to train

an ML algorithm to convergence. Given πm(i) the ranking of configuration i after using

m resources for training, there exists minimum R∗ much smaller than R such that for

all amounts of resources r larger than R∗ the rankings of configurations trained with

r resources remain the same: ∃R∗≪ R : ∀i ∈ {configurations},∀r > R∗,πR∗(i) = πr(i).

The existence of such a quantity, limited to the best performing configuration, is also

assumed by Jamieson and Talwalkar (2016), and it is leveraged to quantify the budget

required to identify the best performing configuration. If we knew R∗, it would be

sufficient to run all configurations with exactly that amount of resources to identify

the best one and then just train the model from scratch with all the data using that

configuration. Unfortunately that quantity is unknown and can only be estimated during

the optimization procedure. Note that in practice there is noise involved in training

of neural networks, so similarly performing configurations will repeatedly swap their

ranks.
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4.4 Methodology

PASHA is an extension of ASHA (Li et al., 2020a) inspired by the “doubling trick” (Auer

et al., 1995). PASHA targets improvements for hyperparameter tuning on large datasets

by hinging on the assumptions made about the crossing points of the learning curves

in Section 4.3. The algorithm starts with a small initial amount of resources and

progressively increases them if the ranking of the configurations in the top two rungs

(rounds of promotion) has not stabilized. The ability of our approach to stop early

automatically is the key benefit. We illustrate the approach in Figure 4.1, showing how

we stop evaluating configurations for additional rungs if rankings are stable.

Figure 4.1: Illustration of how PASHA stops early if the ranking of configurations has

stabilized. Left: the ranking of the configurations (displayed inside the circles) has

stabilized, so we can select the best configuration and stop the search. Right: the

ranking has not stabilized, so we continue.

We describe the details of our proposed approach in Algorithm 4. Given η, a

hyperparameter used both in ASHA and PASHA to control the fraction of configurations

to prune, PASHA sets the current maximum resources Rt to be used for evaluating a

configuration using the reduction factor η and the minimum amount of resources r

to be used (Kt is the current maximum rung). The approach increases the maximum

number of resources allocated to promising configurations each time the ranking of

configurations in the top two rungs becomes inconsistent. For example, if we can

currently train configurations up to rung 2 and the ranking of configurations in rung 1

and rung 2 is not consistent, then we allow training part of the configurations up to rung

3, i.e. one additional rung.

The minimum amount of resources r is a hyperparameter to be set by the user. It

is significantly easier to set compared to R as r is the minimum amount of resources

required to see a meaningful difference in the performance of the models, and it can be

easily estimated empirically by running a few small-scale experiments.
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Algorithm 4 Progressive asynchronous successive halving (PASHA)
1: input minimum resource r, reduction factor η

2: function PASHA()

3: t = 0,R0 = ηr, K0 = ⌊logη(R0/r)⌋
4: while desired do
5: for each free worker do
6: (θ,k) = get_job()

7: run_then_return_val_loss(θ,rηk)

8: end for
9: for completed job (θ, k) with loss l do

10: Update configuration θ in rung k with loss l

11: if k ≥ Kt −1 then
12: πk = configuration_ranking(k)

13: end if
14: if k = Kt and πk ̸≡ πk−1 then
15: t = t +1

16: Rt = ηtR0

17: Kt = ⌊logη(Rt/r)⌋
18: end if
19: end for
20: end while
21: end function

22: function get_job()

23: // Check if there is a promotable config

24: for k = Kt −1, . . . ,1,0 do
25: candidates = top_k(rung k, |rung k|/η)

26: promotable = {c ∈ candidates : c not promoted}
27: if |promotable|> 0 then
28: return promotable[0],k+1

29: end if
30: // If not, grow bottom rung

31: Draw random configuration θ

32: return θ,0

33: end for
34: end function

We also set a maximum amount of resources R so that PASHA can default to ASHA

if needed and avoid increasing the resources indefinitely. While it is not generally

reached, it provides a safety net.
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4.4.1 Soft Ranking

Due to the noise present in the training process, negligible differences in the measured

predictive performance of different configurations can lead to significantly different

rankings. For these reasons we adopt what we call “soft ranking”. In soft ranking,

configurations are still sorted by predictive performance but are considered equivalent

if the performance difference is smaller than a value ε (or equal to it). Instead of

producing a sorted list of configuration, this provides a list of lists where for every

position of the ranking there is a list of equivalent configurations. The concept is

explained graphically in Figure 4.2, and we also provide a formal definition. For a set

of n configurations c1,c2, · · · ,ci, · · · ,cn and performance metric f (e.g. accuracy) with

f (c1)≤ f (c2)≤ ·· · ≤ f (ci)≤ ·· · ≤ f (cn), soft rank at position i is defined as

soft ranki =
{

c j ∈ configurations : | f (ci)− f (c j)| ≤ ε
}
.

When deciding on if to increase the resources, we go through the ranked list of

configurations in the top rung and check if the current configuration at the given rank was

in the list of configurations for that rank in the previous rung. If there is a configuration

which does not satisfy the condition, we increase resources.

Figure 4.2: Illustration of soft ranking. There are three lists with the first two containing

two items because the scores of the two configurations are closer to each other than ε.

4.4.2 Automatic Estimation of ε by Measuring Noise in Rankings

Every operation involving randomization gives slightly different results when repeated,

the training process and the measurement of performance on the validation set are no

exception. In an ideal world, we could repeat the process multiple times to compute em-

pirical mean and variance to make a better decision. Unfortunately this is not possible

in our case since the repeating portions of the training process will defeat the purpose
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of our work: speeding up the tuning process. Understanding when the differences

between the performance measured for different configurations are “significant” is

crucial for ranking them correctly. We devise a method to estimate a threshold below

which differences are meaningless. Our intuition is that configurations with different

performance maintain their relative ranking over time. On the other hand, configura-

tions that repeatedly swap their rankings perform similarly well and the performance

difference in the current epoch or rung is simply due to noise. We want to measure

this noise and use it to automatically estimate the threshold value ε to be used in the

soft-ranking described above.

Formally we can define a set of pairs of configurations that perform similarly well

by the following:

S : {(c,c′) :
(
πr j(c)> πr j(c

′)∧πrk(c)< πrk(c
′)∧πrl(c)> πrl(c

′)
)

∨
(
πr j(c)< πr j(c

′)∧πrk(c)> πrk(c
′)∧πrl(c)< πrl(c

′)
)
},

(4.1)

for resource levels (e.g. epochs – not rungs) r j > rk > rl , using the same notation

as earlier to refer to resources. In practice we have per-epoch validation performance

statistics and use these to find resource levels r j,rk,rl that have configurations with the

criss-crossing behaviour (there can be several epochs between such resource levels).

We only consider configurations (c,c′) that made it to the latest rung, so rηKt−1 ≥ r j >

rηKt−2. However, we allow for the criss-crossing to happen across epochs from any

rungs. The value of ε can then be calculated as the N-th percentile of distances between

the performances of configurations in S:

ε = PN,(c,c′)∈S| fr j(c)− fr j(c
′)|.

The exact value of r j depends on the considered pair of configurations (c,c′).

To uniquely define fr j , we take the maximum resources r j currently available for

both configurations in the considered pair (c,c′). Let us consider the following ex-

ample setup: the top rung has 8 epochs and the next one has 4 epochs, there are

three configurations ca,cb,cc that made it to the top rung and were trained for 8, 8

and 6 epochs so far respectively. Assuming there was criss-crossing within each

pair (ca,cb), (ca,cc) and (cb,cc), the set of distances between configurations in S is

{| f8(ca)− f8(cb)|, | f6(ca)− f6(cc)|, | f6(cb)− f6(cc)|}. The value of ε is recalculated

every time we receive new information about the performances of configurations. Ini-

tially the value of ε is set to 0, which means that we check for exact ranking if we cannot

yet calculate the value of ε.
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4.5 Experiments

In this section we empirically evaluate the performance of PASHA. Its goal is not to

provide a model with a higher accuracy, but to identify the best configuration in a shorter

amount of time so that we can then re-train the model from scratch. Overall, we target a

significantly faster tuning time and on-par predictive performance when comparing with

the models identified by state-of-the-art optimizers like ASHA. Re-training after HPO

or NAS is important because HPO and NAS in general require to reserve a significant

part of the data (often around 20 or 30%) to be used as a validation set. Training with

fewer data is not desirable because in practice it is observed that training a model on

the union of training and validation sets provides better results.

We tested our method on three different sets of experiments. The first set evaluates

the algorithm on NAS problems and uses NASBench201 (Dong and Yang, 2020). The

second and third sets focus on HPO and were run on two large-scale tasks from the PD1

benchmark (Wang et al., 2021b) and the LCBench benchmark (Zimmer et al., 2021).

4.5.1 Setup

Our experimental setup consists of two phases: 1) run the hyperparameter optimizer

until N = 256 candidate configurations are evaluated; and 2) use the best configuration

identified in the first phase to re-train the model from scratch. For the purpose of

these experiments we re-train all the models using only the training set. This avoids

introducing an arbitrary choice on the validation set size and allows us to leverage

standard benchmarks such as NASBench201. In real-world applications the model can

be trained on both training and validation sets. All our results report only the time

invested in identifying the best configuration since the re-training time is comparable

for all optimizers. All results are averaged over multiple repetitions, with the details

specified for each set of experiments separately. We use N = 90-th percentile when

calculating the value of ε.

We use 4 workers to perform parallel and asynchronous evaluations. The choice

of R is sensitive for ASHA as it can make the optimizer consume too many resources

and penalize the performance. For a fair comparison, we make R dataset-dependent

taking the maximum amount of resources in the considered benchmarks. r is also

dataset-dependent and η, the halving factor, is set to 3 unless otherwise specified. The

same values are used for both ASHA and PASHA. Runtime reported is the time spent on

HPO (without retraining), including the time for computing validation set performance.
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We compare PASHA with ASHA (Li et al., 2020a), a widely-adopted approach for

multi-fidelity HPO, and other relevant baselines. In particular, we consider “one-epoch

baseline” that trains all configurations for one epoch (the minimum available resources)

and then selects the most promising configuration, and “random baseline” that randomly

selects the configuration without any training. For both one-epoch and random baselines

we sample N = 256 configurations, using the same scheduler and seeds as for PASHA

and ASHA. All reported accuracies are after retraining for R = 200 epochs. In addition,

two, three and five-epoch baselines are evaluated in Appendix B.1.

4.5.2 Neural Architecture Search Experiments

For our NAS experiments we leverage the well-known NASBench201 (Dong and Yang,

2020) benchmark. The task is to identify the network structure providing the best

accuracy on three different datasets (CIFAR-10, CIFAR-100 and ImageNet16-120)

independently. We use r = 1 epoch and R = 200 epochs. We repeat the experiments

using 5 random seeds for the scheduler and 3 random seeds for NASBench201 (all that

are available), resulting in 15 repetitions. Some configurations in NASBench201 do

not have all seeds available, so we impute them by averaging over the available seeds.

To measure the predictive performance we report the best accuracy on the combined

validation and test set provided by the creators of the benchmark.

The results in Table 4.1 suggest PASHA consistently leads to strong improvements

in runtime, while achieving similar accuracy values as ASHA. The one-epoch baseline

has noticeably worse accuracies than ASHA or PASHA, suggesting that PASHA does a

good job of deciding when to continue increasing the resources – it does not stop too

early. Random baseline is a lot worse than the one-epoch baseline, so there is value in

performing NAS. We also report the maximum resources used to find how early the

ranking becomes stable in PASHA. The large variances are caused by stopping HPO

at different rung levels for different seeds (e.g. 27 and 81 epochs). Note that the time

required to train a model is about 1.3h for CIFAR-10 and CIFAR-100, and about 4.1h

for ImageNet16-120, making the total tuning time of PASHA comparable or faster than

the training time.

We also ran additional experiments testing PASHA with a reduction factor of η = 2

and η = 4 instead of η = 3, the usage of PASHA as a scheduler in MOBSTER (Klein

et al., 2020) and alternative ranking functions. These experiments provided similar

findings as the above and are described next.
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Table 4.1: NASBench201 results. PASHA leads to large improvements in runtime, while

achieving similar accuracy as ASHA.

Dataset Approach Accuracy (%) Runtime Speedup factor Max resources

CIFAR-10

ASHA 93.85 ± 0.25 3.0h ± 0.6h 1.0x 200.0 ± 0.0

PASHA 93.57 ± 0.75 1.3h ± 0.6h 2.3x 36.1 ± 50.0

One-epoch baseline 93.30 ± 0.61 0.3h ± 0.0h 8.5x 1.0 ± 0.0

Random baseline 72.88 ± 19.20 0.0h ± 0.0h N/A 0.0 ± 0.0

CIFAR-100

ASHA 71.69 ± 1.05 3.2h ± 0.9h 1.0x 200.0 ± 0.0

PASHA 71.84 ± 1.41 0.9h ± 0.4h 3.4x 20.5 ± 48.3

One-epoch baseline 65.57 ± 5.53 0.3h ± 0.0h 9.2x 1.0 ± 0.0

Random baseline 42.83 ± 18.20 0.0h ± 0.0h N/A 0.0 ± 0.0

ImageNet16-120

ASHA 45.63 ± 0.81 8.8h ± 2.2h 1.0x 200.0 ± 0.0

PASHA 45.13 ± 1.51 2.9h ± 1.7h 3.1x 21.3 ± 48.1

One-epoch baseline 41.42 ± 4.98 1.0h ± 0.0h 8.8x 1.0 ± 0.0

Random baseline 20.75 ± 9.97 0.0h ± 0.0h N/A 0.0 ± 0.0

Reduction Factor An important parameter for the performance of multi-fidelity

algorithms like ASHA is the reduction factor. This hyperparameter controls the fraction

of pruned candidates at every rung. The optimal theoretical value is e and it is typically

set to 2 or 3. In Table 4.2 we report the results of the different algorithms ran with

η = 2 and η = 4 on CIFAR-100 (the full set of results is in Appendix B.2). The gains

are consistent also for η = 2 and η = 4, with a larger speedup when using η = 2 as that

allows PASHA to make more decisions and identify earlier that it can stop the search.

Table 4.2: NASBench201 – CIFAR-100 results with various reduction factors η. The

speedup is large for both η = 2 and η = 4, and accuracy similar to ASHA is retained.

Dataset Reduction factor Approach Accuracy (%) Runtime Speedup factor Max resources

CIFAR-100

η = 2
ASHA 71.67 ± 0.84 3.8h ± 1.0h 1.0x 200.0 ± 0.0

PASHA 71.65 ± 1.42 0.9h ± 0.1h 4.2x 5.9 ± 2.0

η = 4
ASHA 71.43 ± 1.13 2.7h ± 0.9h 1.0x 200.0 ± 0.0

PASHA 72.09 ± 1.22 1.0h ± 0.4h 2.8x 25.1 ± 49.0

Bayesian Optimization Bayesian Optimization combined with multi-fidelity meth-

ods such as Successive Halving can improve the predictive performance of the final
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model (Klein et al., 2020). In this set of experiments, we verify PASHA can speedup

also these kinds of methods. Our results are reported in Table 4.3, where we can clearly

see PASHA obtains a similar accuracy result as ASHA with significant speedup.

Table 4.3: NASBench201 results for ASHA with Bayesian Optimization searcher –

MOBSTER (Klein et al., 2020) and similarly extended version of PASHA. The results

show PASHA can be successfully combined with a smarter selection strategy.

Dataset Approach Accuracy (%) Runtime Speedup factor Max resources

CIFAR-10
MOBSTER 94.21 ± 0.28 5.0h ± 1.1h 1.0x 200.0 ± 0.0

PASHA BO 94.00 ± 0.20 2.6h ± 1.8h 2.0x 70.7 ± 81.6

CIFAR-100
MOBSTER 72.79 ± 0.68 5.7h ± 1.4h 1.0x 200.0 ± 0.0

PASHA BO 72.16 ± 1.07 1.6h ± 0.5h 3.7x 13.0 ± 8.7

ImageNet16-120
MOBSTER 46.21 ± 0.70 15.1h ± 4.0h 1.0x 200.0 ± 0.0

PASHA BO 45.36 ± 1.06 3.9h ± 1.2h 3.9x 11.8 ± 7.9

Alternative Ranking Functions We have considered a variety of alternative ranking

functions in addition to the soft ranking function that automatically estimates the

value of ε by measuring noise in rankings. These include simple ranking (equivalent

to soft ranking with ε = 0.0), soft ranking with fixed values of ε or obtained using

various heuristics (for example based on the standard deviation of objective values in

the previous rung), Rank Biased Overlap (RBO) (Webber et al., 2010), and our own

reciprocal rank regret metric (RRR) that considers the objective values of configurations.

Details of the ranking functions and additional results are in Appendix B.3.

Table 4.4 shows a selection of the results on CIFAR-100 with full results in the

appendix. We can see there are also other ranking functions that work well and that

simple ranking is not sufficiently robust – some benevolence is needed. However, the

ranking function that estimates the value of ε by measuring noise in rankings (to which

we refer simply as PASHA) remains the easiest to use, is well-motivated and offers both

excellent performance and large speedup.

4.5.3 Hyperparameter Optimization Experiments

We further utilize the PD1 HPO benchmark (Wang et al., 2021b) to show the usefulness

of PASHA in large-scale settings. In particular, we take WMT15 German-English (Bojar

et al., 2015) and ImageNet (Deng et al., 2009) datasets that use xformer (Lefaudeux
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Table 4.4: NASBench201 – CIFAR-100 results for a variety of ranking functions, showing

there are also other well-performing options, even though those are harder to use and

are less interpretable.

Approach Accuracy (%) Runtime (s) Speedup factor Max resources

ASHA 71.69 ± 1.05 3.2h ± 0.9h 1.0x 200.0 ± 0.0

PASHA 71.84 ± 1.41 0.9h ± 0.4h 3.4x 20.5 ± 48.3

PASHA direct ranking 71.69 ± 1.05 2.8h ± 0.7h 1.1x 200.0 ± 0.0

PASHA soft ranking ε = 2.5% 71.41 ± 1.15 1.5h ± 0.7h 2.1x 88.3 ± 74.4

PASHA soft ranking ε = 2σ 71.14 ± 0.97 1.9h ± 0.7h 1.7x 136.4 ± 75.8

PASHA RBO 71.51 ± 0.93 2.4h ± 0.7h 1.3x 180.5 ± 50.6

PASHA RRR 71.42 ± 1.51 1.2h ± 0.5h 2.6x 39.3 ± 51.4

One-epoch baseline 65.57 ± 5.53 0.3h ± 0.0h 9.2x 1.0 ± 0.0

Random baseline 42.83 ± 18.20 0.0h ± 0.0h N/A 0.0 ± 0.0

et al., 2021) and ResNet50 (He et al., 2016) models. Both of them are datasets with a

large amount of training examples, in particular WMT15 German-English has about

4.5M examples, while ImageNet has about 1.3M examples.

In PD1 we optimize four hyperparameters: base learning rate η ∈
[
10−5,10.0

]
(log scale), momentum 1−β ∈

[
10−3,1.0

]
(log scale), polynomial learning rate decay

schedule power p ∈ [0.1,2.0] (linear scale) and decay steps fraction λ ∈ [0.01,0.99]

(linear scale). The minibatch size used for WMT experiments is 64, while the minibatch

size for ImageNet experiments is 512. There are 1414 epochs available for WMT and

251 for ImageNet. There are also other datasets in PD1, but these only have a small

number of epochs with 1 epoch being the minimum amount of resources. As a result

there would not be enough rungs to see benefits of the early stopping provided by

PASHA. If resources could be defined in terms of fractions of epochs, PASHA could

be beneficial there too. Most public benchmarks have resources defined in terms of

epochs, but in practice it is possible to define resources also in alternative ways. We use

1-NN as a surrogate model for the PD1 benchmark. We repeat our experiments using 5

random seeds and there is only one dataset seed available.

The results in Table 4.5 show that PASHA leads to large speedups on both WMT

and ImageNet datasets. The speedup is particularly impressive for the significantly

larger WMT dataset where it is about 15.5x, highlighting how PASHA can significantly

accelerate the HPO search on datasets with millions of training examples (WMT has
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about 4.5M training examples). The one-epoch baseline obtains similar accuracy as

ASHA and PASHA for WMT, but performs significantly worse on ImageNet dataset.

This result suggests that simple approaches such as the one-epoch baseline are not

robust and solutions such as PASHA are needed (which we also saw on NASBench201).

Selecting the hyperparameters randomly leads to significantly worse performance than

any of the other approaches. Note that although PASHA finds a configuration for

ImageNet that is much stronger than the baselines, average accuracy compared to

ASHA is about 2% lower there. This shows the accuracy of the solution found by

PASHA can be worse than that of ASHA in some cases, even if the overall performance

is still very strong.

Table 4.5: Results of the HPO experiments on WMT and ImageNet tasks from the PD1

benchmark. Mean and std of the best validation accuracy (or its equivalent as given in

the PD1 benchmark).

Dataset Approach Accuracy (%) Runtime Speedup factor Max resources

WMT

ASHA 62.72 ± 1.41 43.7h ± 37.2h 1.0x 1357.4 ± 80.4

PASHA 62.04 ± 2.05 2.8h ± 0.6h 15.5x 37.8 ± 21.6

One-epoch baseline 62.36 ± 1.40 0.6h ± 0.0h 67.3x 1.0 ± 0.0

Random baseline 33.93 ± 21.96 0.0h ± 0.0h N/A 0.0 ± 0.0

ImageNet

ASHA 75.10 ± 2.03 7.3h ± 1.2h 1.0x 251.0 ± 0.0

PASHA 73.37 ± 2.71 3.8h ± 1.0h 1.9x 45.0 ± 30.1

One-epoch baseline 63.40 ± 9.91 1.1h ± 0.0h 6.7x 1.0 ± 0.0

Random baseline 36.94 ± 31.05 0.0h ± 0.0h N/A 0.0 ± 0.0

We additionally evaluate PASHA on the LCBench benchmark (Zimmer et al.,

2021) where only modest speedups can be expected due to a small number of epochs

(and hence rungs) available. LCBench limits the maximum amount of resources per

configuration to 50 epochs, so when using and setting the minimum resource level to 1

epoch, it is a challenging testbed for an algorithm like PASHA. The hyperparameters

optimized include number of layers ∈ [1,5], max. number of units ∈ [64,1024] (log

scale), batch size ∈ [16,512] (log scale), learning rate ∈
[
10−4,10−1] (log scale), weight

decay ∈
[
10−5,10−1], momentum ∈ [0.1,0.99] and max. value of dropout ∈ [0.0,1.0].

Similarly as in our other experiments, we use η = 3 and stop after sampling 256

candidates.
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Table 4.6: Results of the HPO experiments on the LCBench benchmark. Mean and std

of the test accuracy across five random seeds. PASHA achieves similar accuracies as

ASHA, but gives only modest speedups because of the limited number of rung levels and

opportunities to stop the HPO early. To enable large speedup from PASHA, we could

redefine the rung levels in terms of neural network weights updates rather than epochs.

Dataset ASHA accuracy (%) PASHA accuracy (%) PASHA speedup

APSFailure 97.52 ± 0.92 97.01 ± 0.75 1.3x

Amazon_employee_access 94.01 ± 0.40 94.21 ± 0.00 1.1x

Australian 83.35 ± 0.33 83.35 ± 0.51 1.1x

Fashion-MNIST 86.70 ± 1.87 86.34 ± 1.32 1.1x

KDDCup09_appetency 98.22 ± 0.00 98.22 ± 0.00 1.1x

MiniBooNE 86.13 ± 1.57 86.24 ± 1.62 1.4x

Adult 79.14 ± 0.85 79.14 ± 0.85 1.2x

Airlines 59.57 ± 1.32 59.22 ± 0.76 1.4x

Albert 64.31 ± 0.99 64.23 ± 0.61 1.2x

Bank-marketing 88.34 ± 0.07 88.38 ± 0.00 1.2x

Blood-transfusion-service-center 79.92 ± 0.20 76.99 ± 6.00 1.1x

Car 86.60 ± 6.41 86.60 ± 6.41 1.1x

Christine 71.05 ± 1.17 70.15 ± 1.85 1.2x

Cnae-9 94.10 ± 0.31 94.44 ± 0.11 1.0x

Connect-4 62.28 ± 6.87 65.69 ± 0.04 1.2x

Covertype 59.76 ± 3.24 61.64 ± 1.64 1.2x

Credit-g 70.30 ± 0.84 70.79 ± 0.68 1.1x

Dionis 64.58 ± 9.89 64.58 ± 9.89 1.1x

Fabert 56.11 ± 10.89 53.47 ± 9.75 1.1x

Helena 19.16 ± 3.20 19.16 ± 3.20 1.1x

Higgs 66.48 ± 3.16 66.48 ± 3.16 1.1x

Jannis 58.92 ± 2.38 59.63 ± 2.81 1.4x

Jasmine 75.85 ± 0.36 75.55 ± 0.68 1.0x

Jungle_chess_2pcs_raw_endgame_complete 72.86 ± 4.69 74.94 ± 7.84 1.3x

Kc1 80.32 ± 4.37 80.86 ± 3.37 1.2x

Kr-vs-kp 92.50 ± 3.93 90.95 ± 4.70 1.0x

Mfeat-factors 98.21 ± 0.15 98.15 ± 0.15 1.1x

Nomao 94.12 ± 0.60 94.25 ± 0.64 1.1x

Numerai28.6 52.03 ± 0.55 52.30 ± 0.24 1.3x

Phoneme 76.65 ± 2.65 75.42 ± 2.87 1.1x

Segment 83.15 ± 2.54 83.15 ± 2.54 1.0x

Sylvine 90.57 ± 1.87 90.89 ± 2.04 1.0x

Vehicle 71.76 ± 2.57 71.76 ± 2.57 1.1x

Volkert 50.72 ± 1.91 50.72 ± 1.91 1.1x
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Overall, the results in Table 4.6 confirm an accuracy level on-par with ASHA. While,

as expected, the speedup is reduced compared to the other experiments, in several cases

PASHA achieves a 20+% speedup with peaks around 40%.

If only a small number of epochs is sufficient for training the model on the given

dataset, then HPO can be performed on a sub-epoch basis, e.g. defining the rung

levels in terms of iterations instead of epochs. PASHA would then be able to give a

large speedup even in cases with smaller numbers of epochs – an example of which is

LCBench.

4.6 Discussion

PASHA is designed to speed up finding the best configuration, making HPO and NAS

more accessible. To do so, PASHA interrupts the tuning process when it considers the

ranking of configurations to be sufficiently stable, not spending resources on evaluating

configurations in later rungs. However, the benefits of such mechanism will be small in

some circumstances. When the number of rungs is small, there will be few opportunities

for PASHA to interrupt the tuning and provide large speedups, as demonstrated on the

LCBench benchmark (Zimmer et al., 2021).

Public benchmarks usually fix the minimum resources to one epoch, while the maxi-

mum is benchmark-dependent (e.g. 200 epochs for NASBench201 and 50 for LCBench),

leaving little control for algorithms like PASHA in some cases. Appendix B.4 analyses

the impact of these choices.

For practical usage, we recommend having a maximum amount of resources at least

100 times larger than the minimum amount of resources when using η = 3 (default).

This can be achieved by measuring resources with higher granularity (e.g. in terms of

gradient updates) if needed.

4.7 Further Developments

PASHA is already making impact within the AutoML community. PASHA has been

integrated into Syne Tune hyperparameter optimization library (Salinas et al., 2022) so

that it can be easily used in practice, and it has been highlighted as one of the advanced

hyperparameter optimization techniques that can be used with the Renate continual

learning library (Wistuba et al., 2023)). PASHA has been included in recent surveys

that focus on the connections between large language models and AutoML (Tornede
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et al., 2023; Xu et al., 2024), showing it can be particularly useful in the new era

of large-scale models. It has also been mentioned as related work in various papers,

including (Ruhkopf et al., 2023) that introduces a new method for algorithm selection

and (Egele et al., 2023) that studies the usefulness of a one-epoch baseline.

Since publishing PASHA there have been various developments within hyperpa-

rameter optimization and neural architecture search. Improvements have been made in

terms of the quality of the found solution as well as the speed of the search. PriorBand

(Mallik et al., 2023) is tailored for deep learning applications, and is able to utilize expert

inputs as well as cheaper proxy tasks to improve the quality of the found configuration.

Kadra et al. (2023) have utilized the power law nature of learning curves for Bayesian

Optimization, introducing a solution that dynamically pauses and trains the sampled

configurations, leading to best any-time results. Conformal quantile regression has

been used to model the target function within model-based HPO approaches in a more

realistic and robust way (Salinas et al., 2023), leading to faster HPO convergence. Addi-

tionally, a meta-learning method based on task-similarity (Watanabe et al., 2023) has

been proposed to speed up multi-objective HPO with tree-structured Parzen estimator.

HPO and NAS have also seen advances more broadly. New variations of HPO have

been introduced, including an ordered transfer HPO (Hellan et al., 2023) where tasks

come sequentially, with the most recent ones being the most relevant. There has also

been work on making HPO more interpretable, by utilizing symbolic explanations to

quantify how hyperparameter values impact the model performance (Segel et al., 2023).

Further, HPO has been utilized as a novel solution for addressing socially-important

problems, as part of the FairTune framework (Dutt et al., 2024) that optimizes parameter-

efficient fine-tuning for fairness in medical image analysis. In NAS in particular, one

of the most important developments has been the introduction of significantly more

expressive search spaces, based on context-free grammars (Schrodi et al., 2023).

4.8 Conclusions

In this work we have introduced a new variant of Successive Halving called PASHA.

Despite its simplicity, PASHA leads to strong improvements in the tuning time. For

example, in many cases it reduces the time needed to about one third compared to ASHA

without a noticeable impact on the quality of the found configuration. For benchmarks

with a small number of rungs (LCBench), PASHA provides more modest speedups but

this limitation can be mitigated in practice by adopting a more granular unit of measure
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for resources. Further work could investigate the definition of rungs and resource levels,

with the aim of understanding how they impact the decisions of the algorithm. More

broadly this applies not only to PASHA but also to multi-fidelity algorithms in general.

PASHA can also be successfully combined with more advanced search strategies

based on Bayesian Optimization to obtain improvements in accuracy at a fraction of the

time. In the future, we would like to test combinations of PASHA with transfer-learning

techniques for multi-fidelity such as RUSH (Zappella et al., 2021) to further decrease

the tuning time.

∗∗∗

We have developed algorithms for more efficient optimization of meta-parameters in

two commonly used scenarios. Being able to optimize meta-parameters efficiently

makes it possible to apply meta-learning methods to larger-scale settings and make the

methods more accessible by decreasing their computational costs. Meta-learning has

a wide range of applications, which increases the importance of its accessibility. To

highlight the opportunities available we use meta-learning as a novel solution to two

problems: uncertainty calibration and general-purpose few-shot learning.
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Chapter 5

Meta-Calibration: Learnable
Uncertainty Calibration

The content of this chapter corresponds to paper:

Meta-Calibration: Learning of Model Calibration Using Differentiable
Expected Calibration Error
Ondrej Bohdal, Yongxin Yang, Timothy Hospedales

Transactions on Machine Learning Research (TMLR), 2023

Calibration of neural networks is a topical problem that is becoming more and

more important as neural networks increasingly underpin real-world applications. The

problem is especially noticeable when using modern neural networks, for which there

is a significant difference between the confidence of the model and the probability of

correct prediction. Various strategies have been proposed to improve calibration, yet

accurate calibration remains challenging. We propose a novel framework with two

contributions: introducing a new differentiable surrogate for expected calibration error

(DECE) that allows calibration quality to be directly optimized, and a meta-learning

framework that uses DECE to optimize for validation set calibration with respect to

model hyperparameters. The results show we achieve competitive performance with

existing calibration approaches. Our framework opens up a new avenue and toolset

for tackling calibration, which we believe will inspire further work on this important

challenge.

68
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5.1 Introduction

When deploying neural networks to real-world applications, it is crucial that models’

own confidence estimates accurately match their probability of making a correct pre-

diction. If a model is over-confident about its predictions, we cannot rely on it; while

well-calibrated models can abstain or ask for human feedback in the case of uncertain

predictions. Models with accurate confidence estimates about their own predictions can

be described as well-calibrated. This is particularly important in applications involving

safety or human impact – such as autonomous vehicles (Bojarski et al., 2016; Wiseman,

2022) and medical diagnosis (Jiang et al., 2012; Caruana et al., 2015; El-Sappagh et al.,

2023), and tasks that directly rely on calibration such as outlier detection (Hendrycks

and Gimpel, 2017; Liang et al., 2018; Wang et al., 2023b). However, modern neural

networks are known to be badly calibrated (Guo et al., 2017; Gawlikowski et al., 2021).

This challenge of calibrating neural networks has motivated a growing area of

research. Perhaps the simplest approach is to post-process predictions with techniques

such as temperature scaling (Guo et al., 2017). However, this has limited efficacy

(Wang et al., 2021a) and fails in the common situation of distribution shift between

training and testing data (Ovadia et al., 2019; Tomani et al., 2021). It also reduces

network’s confidence in correct predictions. Another family of approaches modifies

the model training regime to improve calibration. (Müller et al., 2019) show that

label smoothing regularisation improves calibration by increasing overall predictive

entropy. But it is unclear how to set the label smoothing parameter so as to optimize

calibration. (Mukhoti et al., 2020) show that Focal loss leads to better calibrated models

than standard cross-entropy, and (Kumar et al., 2018) introduce a proxy for calibration

error to be minimised along with standard cross-entropy on the training set. However,

this does not ensure calibration on the test set. (Ovadia et al., 2019; Mosser and Naeini,

2022) show that Bayesian neural network approaches are comparatively well-calibrated,

however these are difficult and expensive to scale to large modern architectures.

The above approaches explore the impact of various architectures and design pa-

rameters on calibration. In this work we step back and consider how to optimize for

calibration. Direct optimization for calibration would require a differentiable metric

for calibration. However, calibration is typically measured using expected calibration

error (ECE), which is not differentiable due to its internal binning/counting operation.

Therefore our first contribution is a high-quality differentiable approximation to ECE,

which we denote DECE. A second consideration is how to optimize for calibration –
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given that calibration itself is a quantity with a generalization gap between training and

validation (Carrell et al., 2022). We illustrate this challenge in Figure 5.1, which shows

how validation calibration worsens as training calibration improves during training. To

this end, our second contribution is to introduce a framework for meta-learning model

calibration: We fit a model on the training set using a given set of hyperparameters,

evaluate it on a disjoint validation set, and optimize for the hyperparameters that lead to

the best validation calibration as measured by DECE. Our framework for differentiable

optimization of validation calibration is generic and can potentially be used with any

continuous model hyperparameters, of which we demonstrate two. Our third contribu-

tion is a specific choice of hyperparameters which, when meta-learned with a suitable

calibration objective, are effective for tuning the base model’s calibration. Specifically,

we propose non-uniform label-smoothing, which can be tuned by meta-learning to

penalise differently each unique combination of true- and predicted-label.
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Figure 5.1: Illustration of the calibration generalization gap. ECE and classification

error during training of ResNet18 on CIFAR-10, using cross-entropy loss and showing

mean and std. across three random seeds. Training ECE and error fall to 0. However,

calibration overfitting occurs and validation ECE increases. This motivates the need for

meta-learning to tune hyperparameters to optimize validation calibration.

To summarise: We present a novel framework and toolset for improving model

calibration by differentiable optimization of model hyperparameters with respect to

validation calibration. We analyse our differentiable calibration metric in detail, and

show that it closely matches the original non-differentiable metric. When instantiated

with label smoothing hyperparameters, our empirical results show that our framework

produces high-accuracy and well-calibrated models that are competitive with existing

methods across a range of benchmarks and architectures. We provide the source code

for Meta-Calibration at https://github.com/ondrejbohdal/meta-calibration.

https://github.com/ondrejbohdal/meta-calibration
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5.2 Related Work

5.2.1 Calibration

Since finding modern neural networks are typically miscalibrated (Guo et al., 2017),

model calibration has become a popular area for research (Gawlikowski et al., 2021) with

many applications, including medical image segmentation (Judge et al., 2022) and object

detection (Munir et al., 2023). (Guo et al., 2017) study a variety of potential solutions

and find simple post-training rescaling of the logits – temperature scaling – works

relatively well. (Kumar et al., 2018) propose a kernel-based measure of calibration called

MMCE that they use as regularization during training of neural networks. (Mukhoti

et al., 2020) show Focal loss – a relatively simple weighted alternative to cross-entropy

– can be used to train well-calibrated neural networks. The classic Brier score (Brier,

1950), which is the squared error between the softmax vector with probabilities and

the ground-truth one-hot encoding, has also been shown to work well. Similarly, label

smoothing (Müller et al., 2019) has been shown to improve model calibration. These

aforementioned methods do not optimize for calibration metric (e.g., ECE) directly,

because the calibration metrics are usually non-differentiable. In this work, we propose a

new high-quality differentiable approximation to ECE, and utilize it with meta-learning.

Karandikar et al. (2021) have proposed soft-binned ECE (SB-ECE) as an auxiliary

loss to be used during training to encourage better calibration. The approach makes the

binning operation used in ECE differentiable, leading to an additional objective that is

more compatible with gradient-based methods. SB-ECE does not make the accuracy

component of ECE differentiable, but we make all components of ECE differentiable.

We also try to obtain a highly accurate approximation of the binning operation, while

SB-ECE binning estimate for the left-most and right-most bin can be inaccurate as a

result of using bin’s center value. We provide additional comparison with SB-ECE in

Appendix C, showing DECE provides a closer approximation to ECE than SB-ECE,

and that empirically our meta-learning approach with DECE leads to better calibration.

5.2.2 Meta-Learning

We use the newly introduced DECE metric as part of the meta-objective for gradient-

based meta-learning. Gradient-based meta-learning has become popular since the

seminal work MAML (Finn et al., 2017) has successfully used it to solve the chal-

lenging problem of few-shot learning. Nevertheless, gradient-based meta-learning is
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not limited to few-shot learning problems, but it can also be used to solve various

other challenges, including training with noisy labels (Shu et al., 2019; Algan and

Ulusoy, 2022), dataset distillation (Wang et al., 2018b; Bohdal et al., 2020; Yu et al.,

2023), domain generalization (Li et al., 2019b; Balaji et al., 2018), molecular property

prediction (Chen et al., 2023c) and many others.

Gradient-based meta-learning is typically formulated as a bilevel optimization

problem where the main model is trained in the inner loop and the meta-knowledge

or hyperparameters are trained in the outer loop. In the case of few-shot learning it is

possible to fully train the model within the inner loop – also known as offline meta-

learning. In more realistic and larger scale settings such as ours, it is only feasible to do

one or a few updates in the inner loop. This approach is known as online meta-learning

(Hospedales et al., 2021) and means that we jointly train the main model as well as the

meta-knowledge. Online meta-learning is most commonly done using the so-called

T1−T2 (Luketina et al., 2016) that updates the meta-knowledge by backpropagating

through one step of the main model update. This is the approach that we adopt, however

more advanced or efficient approaches are also available (Lorraine et al., 2020; Bohdal

et al., 2021).

5.2.3 Label Smoothing

We use label smoothing as the meta-knowledge that we use to demonstrate the benefits

of using our DECE metric. Label smoothing has been proposed by (Szegedy et al.,

2016) as a technique to alleviate overfitting and improve the generalization of neural

networks. It consists of replacing the one-hot labels by their softer alternative that gives

non-zero target probabilities to the incorrect classes. Label smoothing has been studied

in more detail, for example (Müller et al., 2019) have observed that label smoothing

can improve calibration, but at the same time it can hurt knowledge distillation if used

for training the teacher. (Mukhoti et al., 2020) have compared Focal loss with label

smoothing among other approaches, showing that simple label smoothing strategy has a

limited scope for state-of-the-art calibration.

However, we demonstrate that using meta-learning and our DECE objective, a more

expressive form of label smoothing can achieve state-of-the-art calibration results. Note

that meta-learning has already been used for label smoothing (Li et al., 2020b), but

using it as meta-knowledge to directly optimize calibration is new.
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5.3 Methodology

5.3.1 Preliminaries

We first discuss expected calibration error (ECE) (Naeini et al., 2015), before we derive

a differentiable approximation to it. ECE measures the expected difference (in absolute

value) between the accuracies and the confidences of the model on examples that belong

to different confidence intervals. ECE is defined as

ECE =
M

∑
m=1

|Bm|
n
|acc(Bm)− conf(Bm)| ,

where accuracy and confidence for bin Bm are

acc(Bm) =
1
|Bm| ∑

i∈Bm

1(ŷi = yi)

conf(Bm) =
1
|Bm| ∑

i∈Bm

p̂i.

There are M interval bins each of size 1/M and n samples. Confidence p̂i is the

probability of the top prediction as given by the model for example i. We group the

confidences into their corresponding bins, with bin Bm covering interval (m−1
M , m

M ]. The

predicted class of example i is ŷi, while yi is the true class of example i and 1 is an

indicator function.

ECE metric is not differentiable because assigning examples into bins is not dif-

ferentiable and also accuracy is not differentiable due to the indicator function. We

propose approximations to both binning and accuracy and derive a new metric called

differentiable ECE (DECE).

5.3.2 Differentiable ECE

ECE is composed of accuracy, confidence and binning components, but only the confi-

dence component is differentiable. Hence we need to find differentiable approximations

for accuracy and binning.

Differentiable Accuracy In order to obtain a differentiable approximation to accuracy,

we consider approaches that allow us to find a differentiable way to calculate the rank

of a given class. Two approaches stand out: differentiable ranking (Blondel et al., 2020)

and an all-pairs approach (Qin et al., 2010). While both allow us to approximate the

rank in a differentiable way, differentiable ranking is implemented on CPU only, which

would introduce a potential bottleneck for modern applications. All-pairs approach has
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asymptotic complexity of O(n2) for n classes, while differentiable ranking is O(n logn).

However, if the number of classes is not in thousands or millions, differentiable ranking

would be slower because of not using GPUs. We use the all-pairs approach to estimate

the rank of a given class.

All-pairs (Qin et al., 2010) calculates a rank of class i as [R(·)]i = 1+∑ j ̸=i 1
[
φi < φ j

]
,

where φ are the logits. We can obtain soft ranks by replacing the indicator function with

a sigmoid scaled with some temperature value τa to obtain reliable estimates of the rank

of the top predicted class. Once the rank [R(·)]l for true class l is calculated, we can

estimate the accuracy as acc = max(0,2− [R]l).

Soft Binning Our approach is similar to (Yang et al., 2018). We take confidence p̂i

for example xi and pass it through one-layer neural network softmax((wp̂i + b)/τb)

parameterized with different values of w and b as explained in (Yang et al., 2018),

with temperature τb to control the binning. This leads to M different probabilities,

saying how likely it is that p̂i belongs to the specific bin Bm∈1..M. We will denote these

probabilities as om(xi) = p(Bm|p̂i).

Putting these parts together, we define DECE using a minibatch of n examples as:

DECE =
M

∑
m=1

∑
n
i=1 om(xi)

n
|acc(Bm)− conf(Bm)| ,

acc(Bm) =
1

∑
n
i=1 om(xi)

n

∑
i=1

om(xi)1(ŷi = yi) ,

conf(Bm) =
1

∑
n
i=1 om(xi)

n

∑
i=1

om(xi)p̂i.

5.3.3 Meta-Learning

Differentiable ECE provides an objective to optimize, but we still need to decide how

to utilize it. One option could be to directly use it as an extra objective in combination

with standard cross-entropy, as used by a few existing attempts (Karandikar et al., 2021;

Kumar et al., 2018). However, we expect this to be unhelpful as calibration on the

training set is usually good – the issue being a failure of calibration generalization

to the held out validation or test set (Carrell et al., 2022), as illustrated in Figure 5.1.

Meanwhile multi-task training with such non-standard losses may negatively affect the

learning dynamics of existing well tuned model training procedures. To optimize for

calibration of held-out data, without disturbing standard model training dynamics, we

explore the novel approach of using DECE as part of the objective for hyperparameter

meta-learning in an outer loop that wraps an inner learning process of conventional
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cross-entropy-driven model training.

Meta-Learning Objective We formulate our approach as a bilevel optimization prob-

lem. Our model is assumed to be composed of feature extractor θ and classifier φ.

These are trained to minimise L train
CE , cross-entropy loss on the training set. The goal

of meta-learning is to find hyperparameters ω so that training with them optimizes the

meta-objective computed on the meta-validation set. In our case the meta-objective

is a combination of cross-entropy and DECE to reflect that the meta-learned hyperpa-

rameters should lead to both good generalization and calibration. More specifically the

meta-objective is Lval
CE+λDECE , with hyperparameter λ specifying how much weight is

placed on calibration. The bilevel optimization problem can then be summarized as:

ω
∗ = argmin

ω

Lval
CE+λDECE(φ

∗ ◦θ
∗(ω)),

φ
∗,θ∗(ω) = argmin

φ,θ
L train

CE (φ◦θ,ω) . (5.1)

To solve this efficiently, we adopt online meta-learning approach (Luketina et al.,

2016; Hospedales et al., 2021) where we alternate base model and hyperparameter

updates. This is an efficient strategy as we do not need to backpropagate through many

inner-loop steps or retrain the model from scratch for each update of meta-knowledge.

When simulating training during the inner loop, we only update the classifier and

keep the feature extractor frozen for efficiency, as suggested by (Balaji et al., 2018).

Base model training is done separately using a full model update and a more advanced

optimizer.

We give the overview of our meta-learning algorithm in Algorithm 5. The inner

loop that trains the main model (θ,φ) (line 10) is conducted using hyperparameters ω,

while the outer loop (line 12) that trains the hyperparameters does not directly use it

for evaluating the meta-objective (e.g. no learnable label smoothing is applied to the

meta-validation labels that are used in the outer loop). We backpropagate through one

step of update of the main model.

Hyperparameter Choice A key part of meta-learning is to select suitable meta-

knowledge (hyperparameters) that we will optimize to achieve the meta-learning goal

(Hospedales et al., 2021). Having cast calibration optimization as a meta-learning

process, we are free to use any of the wide range of hyperparameters surveyed in

(Hospedales et al., 2021). Note also that in contrast to grid search that standard

temperature scaling (Guo et al., 2017) and other approaches rely on, we have gradients

with respect to hyperparameters and so can therefore potentially optimize calibration
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Algorithm 5 Meta-Calibration

1: Input: α, β: inner and outer-loop learning rates

2: Output: trained feature extractor θ, classifier φ and label smoothing ω

3: ω∼ p(ω)

4: φ,θ∼ p(φ), p(θ)

5: while training do
6: Sample minibatch of training xt ,yt and meta-validation xv,yv examples

7: // For LS: use ω to smooth yt

8: // For L2: add unit-wise weight-decay ω

9: Calculate Li = LCE
(

fφ◦θ (xt) ,yt ,ω
)

10: Update θ,φ← θ,φ−α∇θ,φLi

11: Calculate Lo = LCE+λDECE
(

fφ◦θ (xv) ,yv
)

12: Update ω← ω−β∇ωLo

13: end while

with respect to high-dimensional hyperparameters. In this work we explore two options

to demonstrate this generality: 1) Unit-wise L2 regularisation coefficients of each

weight in the classifier layer, inspired by (Balaji et al., 2018) and (Lorraine et al., 2020);

and 2) various types of learnable label smoothing (LS) (Müller et al., 2019). However,

we found LS to be better overall, so our experiments focus on this and selectively

compare against L2.

Learnable Label Smoothing Learnable label smoothing learns one or more coef-

ficients to smooth the one-hot encoded labels. More formally, if there are K classes

in total, yk is 1 for the correct class k = c and yk is 0 for all classes k ̸= c, then with

learnable label smoothing ω the soft label for class k becomes

yLS
k = yk(1−ωc,k)+ωc,k/K.

In the scalar case of label smoothing ωc is the same for all classes, while for the vector

case it takes different values for each class c. We consider scalar and vector variations

as part of ablation.

Our main variation of meta-calibration uses non-uniform label smoothing. It is

computed using the overall strength of smoothing ωs
c for the correct class c and also ωd

c,k

saying how ωs
c is distributed across the various incorrect classes k ̸= c. Given correct

class c, with this variation the soft label for class k is calculated as:

yLS
k = yk(1−ω

s
c)+ω

s
c

ωd
c,k

ε+∑
K
i=1 ωd

c,i
,
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where we normalize the distribution weights to sum to 1 and use small value ε to

avoid division by 0. Learnable label smoothing parameters are restricted to non-negative

values, with the total label smoothing strength at most 0.5. In practice the above is

implemented by learning a vector of K elements specifying the strengths of overall

label smoothing for different correct classes c, and a matrix of K× (K−1) elements

specifying how the label smoothing is distributed across incorrect classes k ̸= c.

Learnable L2 Regularization In the case of learnable L2 regularization (cf: (Balaji

et al., 2018)), the goal is to find unit-wise L2 regularization coefficients ω for the

classifier layer φ so that training with them optimizes the meta-objective that includes

DECE (θ is the feature extractor). The inner loop loss becomes

Li = LCE
(

fφ◦θ (xt) ,yt
)
+ω∥φ∥2.

5.4 Experiments

Our experiments show that DECE-driven meta-learning can be used to obtain excellent

calibration across a variety of benchmarks and models.

5.4.1 Datasets and Settings

We experiment with CIFAR-10 and CIFAR-100 benchmarks (Krizhevsky, 2009), SVHN

(Netzer et al., 2011) and 20 Newsgroups dataset (Lang, 1995), covering both computer

vision and NLP. For CIFAR benchmark, we use ResNet18, ResNet50, ResNet110 (He

et al., 2016) and WideResNet26-10 (Zagoruyko and Komodakis, 2016) models. For

SVHN we use ResNet18, while for 20 Newsgroups we use global pooling CNN (Lin

et al., 2014). We extend the implementation provided by (Mukhoti et al., 2020) to

implement and evaluate our meta-learning approach. We use the same hyperparameters

as selected by the authors for fair comparison, which we summarize next.

CIFAR and SVHN models are trained for 350 epochs, with a multi-step scheduler

that decreases the initial learning rate of 0.1 by a factor of 10 after 150 and 250 epochs.

Each model is trained with SGD with momentum of 0.9, weight decay of 0.0005 and

minibatch size of 128. 90% of the original training set is used for training and 10% for

validation. In the case of meta-learning, we create a further separate meta-validation set

that is of size 10% of the original training data, so we directly train with 80% of the

original training data. 20 Newsgroups models are trained with Adam optimizer with the
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default parameters, 128 minibatch size and for 50 epochs. As the final model we select

the checkpoint with the best validation accuracy.

For DECE, we use M = 15 bins and scaling parameters τa = 100,τb = 0.01. Learn-

able label smoothing coefficients are optimized using Adam (Kingma and Ba, 2015)

optimizer with learning rate of 0.001. The meta-learnable parameters are initialized

at 0.0 (no label smoothing or L2 regularization initially). The total number of meta-

parameters is K×K, 1 and K for the non-uniform, scalar and vector label smoothing

respectively, while it is 512×K +K for learnable L2 regularization. We use λ = 0.5

in the meta-objective, and we have selected it based on validation set calibration and

accuracy after trying several values.

5.4.2 Results

We first follow the experimental setup of (Mukhoti et al., 2020) and compare with

the following alternatives: 1) cross-entropy, 2) Brier score (Brier, 1950), 3) Weighted

MMCE (Kumar et al., 2018) with λ = 2, 4) Focal loss (Lin et al., 2017) with γ = 3,

5) Adaptive (sample dependent) focal loss (FLSD) (Mukhoti et al., 2020) with γ = 5

and γ = 3 for predicted probability p ∈ [0,0.2) and p ∈ [0.2,1) respectively. 6) Label

smoothing (LS) with a fixed smoothing factor of 0.05. In all cases we report the mean

and standard deviation across 3 repetitions to obtain a more reliable estimate of the

performance. In contrast, (Mukhoti et al., 2020) report their results on only one run, so

in the tables we include our own results for the comparison with the baselines.

We show the test ECE, test ECE after temperature scaling (TS) and test error rates

in Tables 5.1, 5.2 and 5.3 respectively. Meta-Calibration leads to excellent intrinsic

calibration without the need for post-processing (Table 5.1), which is practically valu-

able because post-processing is not always possible (Kim and Yun, 2020) or reliable

(Ovadia et al., 2019). However, even after post-processing using TS Meta-Calibration

gives competitive performance (Table 5.2), as evidenced by the best average rank across

the considered scenarios. Table 5.3 shows that Meta-Calibration maintains comparable

accuracy to the competitors, even if it does not have the best average rank there. Over-

all Meta-Calibration leads to significantly better intrinsic calibration, while keeping

similar or only slightly worse accuracy. Note that while Brier score, Focal loss and

FLSD modify the base model’s loss function, our Meta-Calibration corresponds to the

vanilla cross-entropy baseline, but where label smoothing is tuned by our DECE-driven

hyperparameter meta-learning rather than being selected by hand.
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Table 5.1: Test ECE (%, ↓): Our Meta-Calibration (MC) leads to excellent intrinsic

calibration.

Dataset Model CE Brier MMCE FL-3 FLSD-53 LS MC (Ours)

CIFAR-10

ResNet18 4.23 ± 0.15 1.23 ± 0.03 4.36 ± 0.16 2.11 ± 0.09 2.22 ± 0.04 3.63 ± 0.06 1.17 ± 0.26

ResNet50 4.20 ± 0.01 1.95 ± 0.15 4.49 ± 0.18 1.48 ± 0.19 1.68 ± 0.14 2.58 ± 0.26 1.09 ± 0.09

ResNet110 4.81 ± 0.12 2.58 ± 0.17 4.20 ± 0.74 1.82 ± 0.20 2.16 ± 0.22 1.96 ± 0.36 1.07 ± 0.12

WideResNet26-10 3.37 ± 0.11 1.03 ± 0.08 3.48 ± 0.06 1.57 ± 0.32 1.50 ± 0.15 3.68 ± 0.10 0.94 ± 0.10

CIFAR-100

ResNet18 8.79 ± 0.59 5.19 ± 0.18 7.41 ± 1.30 2.83 ± 0.27 2.47 ± 0.12 6.87 ± 0.29 2.52 ± 0.35

ResNet50 12.56 ± 1.44 4.82 ± 0.36 9.02 ± 1.72 4.78 ± 1.00 5.43 ± 0.31 5.94 ± 0.52 3.07 ± 0.18

ResNet110 14.96 ± 0.83 6.52 ± 0.56 12.29 ± 1.25 6.64 ± 1.42 7.38 ± 0.25 10.69 ± 0.39 2.80 ± 0.58

WideResNet26-10 12.39 ± 1.44 4.26 ± 0.30 8.35 ± 2.79 2.36 ± 0.13 2.30 ± 0.36 3.94 ± 0.96 3.86 ± 0.34

SVHN ResNet18 2.98 ± 0.08 1.94 ± 0.10 3.14 ± 0.10 2.69 ± 0.06 2.83 ± 0.17 3.88 ± 0.01 1.14 ± 0.12

20 Newsgroups Global Pooling CNN 18.58 ± 0.80 16.49 ± 0.70 14.68 ± 1.03 7.51 ± 0.51 6.13 ± 1.84 5.14 ± 0.64 2.56 ± 0.38

Average rank 6.4 3.5 6.1 2.8 3.1 4.8 1.3

Table 5.2: Test ECE with temperature scaling (%, ↓): Our Meta-Calibration (MC) obtains

excellent calibration also after temperature scaling.

Dataset Model CE Brier MMCE FL-3 FLSD-53 LS MC (Ours)

CIFAR-10

ResNet18 1.16 ± 0.10 (2.30) 1.23 ± 0.03 (1.00) 1.25 ± 0.08 (2.30) 1.10 ± 0.11 (0.90) 1.48 ± 0.31 (0.87) 1.31 ± 0.08 (0.90) 1.34 ± 0.47 (0.97)

ResNet50 1.20 ± 0.17 (2.53) 0.97 ± 0.02 (1.17) 1.35 ± 0.38 (2.50) 1.10 ± 0.16 (1.07) 1.21 ± 0.31 (1.07) 1.42 ± 0.15 (0.90) 1.09 ± 0.09 (1.00)

ResNet110 1.49 ± 0.19 (2.57) 1.55 ± 0.35 (1.13) 1.20 ± 0.45 (1.90) 1.21 ± 0.07 (1.10) 1.33 ± 0.14 (1.10) 2.16 ± 0.21 (0.90) 1.33 ± 0.37 (0.97)

WideResNet26-10 1.14 ± 0.13 (2.20) 1.03 ± 0.08 (1.00) 0.99 ± 0.19 (2.23) 1.20 ± 0.29 (0.87) 1.09 ± 0.02 (0.90) 1.32 ± 0.04 (0.90) 0.94 ± 0.10 (1.00)

CIFAR-100

ResNet18 5.47 ± 0.22 (1.33) 4.21 ± 0.23 (0.90) 6.09 ± 0.39 (1.13) 2.83 ± 0.27 (1.00) 2.47 ± 0.12 (1.00) 4.37 ± 0.45 (0.90) 2.71 ± 0.58 (1.03)

ResNet50 2.51 ± 0.23 (1.57) 3.43 ± 0.32 (1.10) 3.19 ± 0.53 (1.37) 2.25 ± 0.69 (1.10) 2.53 ± 0.11 (1.10) 4.28 ± 0.42 (1.10) 2.51 ± 0.45 (1.07)

ResNet110 3.77 ± 0.51 (1.57) 3.71 ± 0.67 (1.17) 2.74 ± 0.45 (1.40) 3.97 ± 0.28 (1.10) 4.13 ± 0.40 (1.10) 6.04 ± 0.31 (1.10) 2.55 ± 0.33 (1.03)

WideResNet26-10 3.08 ± 0.26 (1.80) 2.49 ± 0.13 (1.10) 4.52 ± 0.52 (1.40) 2.20 ± 0.12 (1.03) 2.30 ± 0.36 (1.00) 3.62 ± 0.74 (1.07) 2.72 ± 0.19 (1.10)

SVHN ResNet18 0.74 ± 0.04 (2.10) 0.83 ± 0.09 (0.90) 1.10 ± 0.01 (2.30) 0.90 ± 0.43 (0.83) 1.11 ± 0.37 (0.87) 1.45 ± 0.51 (0.87) 1.14 ± 0.12 (1.00)

20 Newsgroups Global Pooling CNN 2.85 ± 0.34 (3.67) 4.32 ± 0.79 (2.97) 4.00 ± 0.22 (2.60) 3.59 ± 0.34 (1.43) 2.76 ± 0.20 (1.33) 3.19 ± 0.30 (1.10) 2.50 ± 0.32 (0.97)

Average rank 3.7 3.8 4.4 3.0 3.9 6.2 2.8

Table 5.3: Test error (%, ↓): Our Meta-Calibration (MC) obtains excellent calibration with

only small increases in the test error.

Dataset Model CE Brier MMCE FL-3 FLSD-53 LS MC (Ours)

CIFAR-10

ResNet18 4.99 ± 0.14 5.27 ± 0.21 5.17 ± 0.19 5.06 ± 0.09 5.22 ± 0.04 4.94 ± 0.13 5.22 ± 0.06

ResNet50 4.90 ± 0.02 5.15 ± 0.14 5.13 ± 0.12 5.27 ± 0.22 5.26 ± 0.15 4.77 ± 0.11 5.46 ± 0.05

ResNet110 5.40 ± 0.10 5.97 ± 0.17 5.70 ± 0.12 5.67 ± 0.33 5.87 ± 0.13 5.45 ± 0.11 6.09 ± 0.22

WideResNet26-10 3.99 ± 0.07 4.20 ± 0.03 4.11 ± 0.06 4.18 ± 0.03 4.22 ± 0.05 4.05 ± 0.07 4.36 ± 0.20

CIFAR-100

ResNet18 22.85 ± 0.17 23.50 ± 0.17 23.80 ± 0.18 22.87 ± 0.16 23.23 ± 0.32 22.35 ± 0.27 23.88 ± 0.20

ResNet50 22.41 ± 0.24 24.81 ± 0.33 22.43 ± 0.05 22.27 ± 0.13 22.76 ± 0.27 21.85 ± 0.06 23.22 ± 0.48

ResNet110 22.99 ± 0.19 28.29 ± 1.42 23.81 ± 0.58 23.12 ± 0.26 23.71 ± 0.24 23.08 ± 0.15 24.51 ± 0.41

WideResNet26-10 20.41 ± 0.12 20.77 ± 0.05 20.60 ± 0.10 19.80 ± 0.40 19.97 ± 0.25 20.82 ± 0.42 22.35 ± 0.03

SVHN ResNet18 4.11 ± 0.08 3.90 ± 0.19 4.15 ± 0.08 4.20 ± 0.07 4.18 ± 0.06 4.13 ± 0.09 4.08 ± 0.02

20 Newsgroups Global Pooling CNN 26.64 ± 0.27 26.59 ± 0.72 26.92 ± 0.32 27.65 ± 0.38 27.59 ± 0.94 26.10 ± 0.31 27.26 ± 0.59

Average rank 2.1 4.9 4.2 3.9 4.8 2.1 5.9
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5.4.3 Further Analysis

Alternative Calibration Metrics We investigate if models meta-trained using DECE

also perform well when evaluated using more advanced calibration metrics than ECE.

In particular, we evaluate performance using class-wise ECE (CECE) (Kumar et al.,

2019; Widmann et al., 2019; Vaicenavicius et al., 2019; Kull et al., 2019) that considers

the scores of all classes in the predicted distribution, instead of only the class with the

highest probability. The results in Table 5.4 confirm that models meta-trained using

DECE have excellent calibration also in terms of the CECE criterion.

Table 5.4: Test Classwise-ECE (%, ↓): Our Meta-Calibration (MC) leads to excellent

calibration also when using a more advanced calibration metric.

Dataset Model CE Brier MMCE FL-3 FLSD-53 LS-0.05 MC (Ours)

CIFAR-10

ResNet18 0.87 ± 0.04 0.46 ± 0.02 0.91 ± 0.03 0.52 ± 0.02 0.53 ± 0.03 0.73 ± 0.01 0.41 ± 0.01

ResNet50 0.88 ± 0.01 0.46 ± 0.02 0.93 ± 0.04 0.44 ± 0.02 0.44 ± 0.03 0.63 ± 0.02 0.48 ± 0.04

ResNet110 0.99 ± 0.02 0.58 ± 0.04 0.89 ± 0.14 0.50 ± 0.02 0.55 ± 0.05 0.66 ± 0.03 0.45 ± 0.01

WideResNet 0.71 ± 0.01 0.37 ± 0.00 0.74 ± 0.01 0.43 ± 0.02 0.43 ± 0.04 0.72 ± 0.02 0.34 ± 0.00

CIFAR-100

ResNet18 0.23 ± 0.01 0.24 ± 0.00 0.22 ± 0.01 0.20 ± 0.00 0.20 ± 0.00 0.26 ± 0.00 0.19 ± 0.00

ResNet50 0.29 ± 0.03 0.20 ± 0.01 0.24 ± 0.03 0.20 ± 0.00 0.20 ± 0.01 0.21 ± 0.00 0.19 ± 0.00

ResNet110 0.34 ± 0.02 0.23 ± 0.01 0.29 ± 0.02 0.22 ± 0.01 0.23 ± 0.00 0.26 ± 0.00 0.19 ± 0.00

WideResNet 0.29 ± 0.02 0.19 ± 0.00 0.23 ± 0.03 0.18 ± 0.00 0.18 ± 0.00 0.21 ± 0.01 0.19 ± 0.00

SVHN ResNet18 0.62 ± 0.02 0.52 ± 0.02 0.65 ± 0.02 0.67 ± 0.03 0.68 ± 0.04 0.81 ± 0.05 0.29 ± 0.03

20 Newsgroups Global Pooling CNN 2.01 ± 0.07 1.80 ± 0.04 1.63 ± 0.09 1.29 ± 0.03 1.22 ± 0.14 0.97 ± 0.06 1.00 ± 0.04

Average rank 6.0 3.3 5.8 2.5 2.8 5.1 1.6

Alternative Hyperparameter Choice We present a general metric that can be used

for optimizing hyperparameters for superior calibration. While our main experiments

are conducted with non-uniform label smoothing, we demonstrate the generality of the

framework by also learning alternative meta-parameters. In particular, we also consider

scalar and vector version of label smoothing as well as learnable L2 regularisation. We

perform the additional evaluation using ResNet18 on the CIFAR benchmark.

The results in Table 5.5 confirm learnable L2 regularisation also leads to clear

improvement in ECE over the cross-entropy baseline. However, the error rate is

slightly increased compared to learnable LS, hence we focused on the latter for our

other experiments. Scalar and vector LS (MC-S and MC-V) have both improved the

calibration, but non-uniform label smoothing (MC) has worked better thanks to its

larger expressivity.

Ablation Study on Meta-Learning Objective Design Recall our framework in

Equation 5.1 is setup to perform conventional model training in the inner optimization,

given hyperparameters; and meta-learning of hyperparameters in the outer optimization,
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Table 5.5: Comparison of hyperparameter choice for meta-calibration: CIFAR benchmark

with ResNet18 model. Test errors (%, ↓) and test ECE (%, ↓). Other variants of

Meta-Calibration also lead to strong improvements in calibration, with non-uniform label

smoothing leading to the best calibration overall.

Dataset Method ECE (↓) Error (↓)

CIFAR-10

CE 4.23 ± 0.15 4.99 ± 0.14

MC 1.17 ± 0.26 5.22 ± 0.06

MC-S 1.48 ± 0.26 5.17 ± 0.13

MC-V 1.51 ± 0.26 5.07 ± 0.03

MC-L2 1.78 ± 0.22 5.49 ± 0.14

CIFAR-100

CE 8.79 ± 0.59 22.85 ± 0.17

MC 2.52 ± 0.35 23.88 ± 0.20

MC-S 6.13 ± 1.20 24.07 ± 0.17

MC-V 3.98 ± 0.23 23.96 ± 0.12

MC-L2 4.18 ± 0.26 26.10 ± 0.14

by minimising a combination of cross-entropy and our DECE metric as evaluated on

the meta-validation set. While we view this setup as being the most intuitive, other

architectures are also possible in terms of choice of objective for use in the inner and

outer layer of the bilevel optimization. As a comparison to our DECE, we also evaluate

the prior metric MMCE previously proposed as a proxy for model calibration in (Kumar

et al., 2018).

From the results in Table 5.6 we can conclude that: 1) Meta-learning with combined

CE and DECE meta-objective is beneficial for improving calibration (M5 vs M0). 2)

Alternative outer-loop objectives CE (M2) and DECE (M3) improve calibration but not

as significantly as the combined meta-objective (M5 vs M2 and M5 vs M4). 3) MMCE

completely fails as a meta-objective (M3). 4) DECE improves calibration when used

as a secondary loss in multi-task learning, but at greater detriment to test error (M1 vs

M0). 5) Our combined meta-objective (M5) is the best overall.

Evaluating DECE Approximation to ECE A key contribution of this work is

DECE, a differentiable approximation to expected calibration error. In this section we

investigate the quality of our DECE approximation. We trained the same ResNet18

backbone on both CIFAR-10 and CIFAR-100 benchmarks for 350 epochs, recording

DECE and ECE values at various points. The results in Figure 5.2a show both Spearman

and Pearson correlation coefficient between DECE and ECE. In both cases they are

close to 1, and become even closer to 1 as training continues. This shows that DECE

accurately estimates ECE, while providing differentiability for end-to-end optimization.
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Table 5.6: Ablation study on losses for inner and outer objectives in bilevel optimization

using CIFAR-10 and CIFAR-100 with ResNet18.

CIFAR-10 CIFAR-100

Model Meta-Loss Loss ECE (%, ↓) Error (%, ↓) ECE (%, ↓) Error (%, ↓)

M0: Vanilla CE - CE 4.23 ± 0.15 4.99 ± 0.14 8.79 ± 0.59 22.85 ± 0.17

M1: Multi-task - CE + DECE 3.80 ± 0.03 10.24 ± 0.21 4.40 ± 0.39 29.49 ± 0.17

M2: Meta-Calibration CE CE 1.31 ± 0.36 5.13 ± 0.24 3.00 ± 1.12 23.72 ± 0.40

M3: Meta-Calibration MMCE CE 44.24 ± 0.70 6.77 ± 0.25 21.94 ± 2.39 25.40 ± 0.31

M4: Meta-Calibration DECE CE 1.26 ± 0.44 5.21 ± 0.14 3.28 ± 0.31 23.83 ± 0.14

M5: Meta-Calibration CE + DECE CE 1.17 ± 0.26 5.22 ± 0.06 2.52 ± 0.35 23.88 ± 0.20

We further we show in Figure 5.2b that their mean values are very close to each other.
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Figure 5.2: Evaluation of how DECE approximates ECE, using ResNet18 on CIFAR.

What Hyperparameters are Learned? We show our approach learns non-trivial

hyperparameter settings to achieve its excellent calibration performance. Figure 5.3

shows how the learned overall strength of smoothing evolves during training for both

CIFAR-10 and CIFAR-100 benchmarks – using ResNet18. We show the mean and

standard deviation across 3 repetitions and all classes.

From the figure we observe label smoothing changes in response to changes in

learning rate, which happens after 150 and 250 epochs. For CIFAR-100 with more

classes it starts with large smoothing values and finishes with smaller values. The large

standard deviations are due to the model making use of a wide range of class-wise

smoothing parameters. It would be infeasible to manually select a curriculum for label

smoothing at different stages of training, as it would be to tune a range of smoothing

parameters: The ability to optimize these hyperparameters automatically is a key benefit

of our framework.

We also analyse how the smoothing is distributed across the different classes in

Figure 5.4 and 5.5. The results show that the smoothing is indeed non-uniform, demon-
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Figure 5.3: Overall label smoothing during training for CIFAR, using ResNet18. The

learned smoothing strategy is non-trivial and adapts according to the learning rate

schedule.

strating the model does exploit the ability to learn a complex label-smoothing distribu-

tion. The learned non-uniform label-smoothing distribution can be observed to subject

visually similar classes to more smoothing (Figure 5.4(b)), which makes sense to reduce

the confidence of the most likely kinds of specific errors. This idea is quantified more

systematically for CIFAR-100 in Figure 5.5, which compares the average degree of

smoothing between classes in the same superclass, and those in different superclasses.

The results show that within-superclass smoothing is generally much stronger than

across-superclass smoothing, even though the model receives no annotation or super-

vision about superclasses. It learns this smoothing structure given the objective of

optimizing (meta-)validation calibration.

0 1 2 3 4 5 6 7 8 9

0.03 0.01 0.01 0.07 0.03 0.07 0.01 0.01 0.01 0.03
0.025
0.050

(a) Overall level of smoothing in various

classes.

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

0.0 0.2 0.2 0.1 0.1 0.0 0.0 0.1 0.2 0.1
0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.1 0.2 0.5
0.1 0.1 0.0 0.3 0.0 0.1 0.1 0.2 0.0 0.0
0.0 0.0 0.1 0.0 0.1 0.5 0.1 0.1 0.0 0.0
0.0 0.0 0.4 0.1 0.0 0.1 0.1 0.3 0.0 0.0
0.0 0.0 0.1 0.6 0.1 0.0 0.1 0.1 0.0 0.0
0.0 0.1 0.3 0.1 0.2 0.1 0.0 0.0 0.0 0.1
0.1 0.1 0.1 0.2 0.1 0.2 0.0 0.0 0.0 0.1
0.2 0.2 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.3
0.2 0.5 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.0

0.0

0.1

0.2

0.3

0.4

0.5

(b) Distribution of smoothing across various

classes.

Figure 5.4: Analysis of learned non-uniform label smoothing for CIFAR-10, using

ResNet18 model. Visually similar classes receive more smoothing – e.g. cat and

dog (3 and 5), and automobile and truck (1 and 9).
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Figure 5.6: Reliability analysis for CIFAR-10 and CIFAR-100, using ResNet18 model.

We further analysed the hyperparameters in the case of learnable L2 regularization

and show it in Appendix C. The figure shows we learn a range of regularization values

to achieve a good calibration outcome. This highlights the value of our differentiable

framework that enables efficient gradient-based optimization of many hyperparameters.

Reliability Analysis We perform reliability analysis and show the percentage of

samples with various confidence levels in Figure 5.6 for CIFAR-10 and CIFAR-100. We

use ResNet18 and take the best model from training – early stopping. The figure shows

learnable label smoothing leads to visually better alignment between the expected and

actual confidence binning. It also leads to softening the confidences of predictions,

which is expected for label smoothing.

Analysis of Accuracy vs Calibration Using Simulated Data Meta-Calibration leads

to significantly better calibration, while keeping similar or only marginally worse

accuracy. To study if there is a trade-off between accuracy vs calibration we perform an

experiment using simulated data. More specifically the experiment with simulated data

consists of 1) sampling parameters of a binary logistic regression model (oracle) over

2D data, 2) sampling the label for each data point from a binomial distribution with

a class probability given by the oracle. 3) We then use the sampled data to train (i) a
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Figure 5.7: Visualization of the estimated probabilities across test data points.

vanilla logistic regression model, (ii) label-smoothing logistic regression model and (iii)

a Meta-Calibration logistic regression model. This enables us to compare the best-case

classifier accuracy and calibration with the results of learned models. Our experiment is

repeated across 3 random seeds so that we can report the mean and standard deviation.

The results in Table 5.7 confirm Meta-Calibration matches both the test accuracy

and ECE of the oracle, obtaining close to the best possible calibration. Analogous

cross-entropy training as well as simple label smoothing (LS) have a significantly larger

ECE. The ECE of Meta-Calibration and oracle is close to 0, but not precisely 0 due to

sampling effects (i.e. because we do not use an infinite amount of data). We have also

visualized the estimated class probabilities of different data points, together with the

decision boundary. The visualization shows that Meta-Calibration and the oracle are

similarly calibrated (e.g., similar point shades close to the decision boundary), while a

difference in calibration (point shading) is perceptible for cross-entropy and LS.

Table 5.7: Analysis of accuracy and calibration on simulated data with known oracle. Test

accuracy and ECE (%) are reported, with the mean and standard deviation computed

across 3 random seeds. Our Meta-Calibration (MC) matches both the accuracy and

ECE of the oracle, obtaining close to perfect calibration.

Metric Oracle Cross-Entropy LS MC (Ours)

Accuracy (↑) 87.62 ± 1.87 87.55 ± 1.86 87.57 ± 1.87 87.55 ± 1.81

ECE (↓) 1.38 ± 0.32 9.81 ± 1.14 3.61 ± 0.43 1.40 ± 0.19
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5.5 Discussion

This work is a pioneering step in using meta-learning to directly optimize model

calibration. Learnable rather than hand-tuned calibration is important as different

models and datasets have very different calibration properties, precluding a one-size-

fits-all solution (Minderer et al., 2021). There are many ways our work could be

extended in the future. One direction is to target different hyperparameters beyond the

label smoothing and L2 classifier regularization evaluated here, such as loss learning.

While we did not explore this here, the framework could also be used to unify post-hoc

methods such as temperature scaling by treating temperature as the hyperparameter.

Secondly, better meta-learning algorithms such as implicit meta-learning (Lorraine

et al., 2020) could better optimize the meta-objective. A third direction is to extend

the differentiable metric itself to e.g. adapt it to various domain-specific calibration

measures – for example ones relevant to the finance industry (Liu et al., 2019b).

A drawback of our approach is the computational overhead added by meta-learning

compared to basic model training. However, it is still manageable and may be worth

it when well-calibrated models are crucial. We give an overview in Table C.1 in

Appendix C. Ongoing advances in meta-learning algorithms (Lorraine et al., 2020;

Bohdal et al., 2021) can make the overhead smaller. In terms of social implications,

our work aims to improve the reliability of neural networks, but there still are risks the

neural networks will fail to accurately estimate their confidence.

Our EvoGrad approach is well-suited to be the underlying meta-learning method

for Meta-Calibration to decrease its computational costs. PASHA could be helpful for

scalar or vector variations of learnable label smoothing, but it is unlikely to work well

for non-uniform label smoothing or learnable L2 regularization as these cases have

many meta-parameters. Further, PASHA does not support the dynamically changing

value of meta-parameters, which may also contribute to the success of Meta-Calibration.

5.6 Further Developments

Meta-Calibration has been utilized in a number of ways. Inspired by our work, re-

searchers have started looking at calibration as a meta-learning problem, with for

example (Yang et al., 2022; Wang and Golebiowski, 2023; Iwata and Kumagai, 2023)

following our meta-learning of calibration framework. Yang et al. (2022) have ap-

plied our framework in a few-shot learning setting, while Wang and Golebiowski
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(2023) have targetted the same general setup as us and used a different type of meta-

parameters. Iwata and Kumagai (2023) have extended the concept to calibration of

Gaussian processes in regression settings. Our DECE metric has also been utilized by

other researchers. Emde et al. (2023) have utilized DECE in the context of certified

calibration, which is important when encountering adversarial attacks. Marques et al.

(2023) have used DECE as part of their Generalized Learned Fusion Strategy that

targets the problem of overconfidence in semantic 3D mapping. Parts of our differen-

tiable calibration objective have also been repurposed, with Huang et al. (2023) using

our differentiable accuracy part of the objective. Additionally Jiang and Deng (2023)

compare with our method among others, and (Wang et al., 2022a; Patra et al., 2023;

Tao et al., 2023a,b) are a few of the papers that mention Meta-Calibration as a recent

approach for calibration. Meta-Calibration has also been included in a survey mapping

state-of-the-art approaches for calibration in deep learning (Wang, 2023).

The broader area of uncertainty calibration has also seen progress. Park et al. (2023)

have analysed existing regularization-based approaches for uncertainty calibration and

shown these can be interpreted as variants of label smoothing. Based on this insight,

they have developed a new loss function that includes adaptive and conditional label

smoothing, for example with the smoothing proportional to the logit values. With such

approach, they have obtained state-of-the-art uncertainty calibration results on both

classification and segmentation problems. Uncertainty calibration is being increasingly

often studied for object detection, with Munir et al. (2023) proposing a new training-

time loss and Popordanoska et al. (2024) introducing a new differentiable estimator of

detection calibration error.

Uncertainty calibration is a topic that is important also for foundational models such

as CLIP (Radford et al., 2021). Levine et al. (2023) have studied the calibration of

large vision-language models in the zero-shot inference mode, and they found models

such as CLIP are miscalibrated. As a solution they proposed a variant of temperature

scaling. Oh et al. (2023) have studied the calibration of large vision-language models

under distribution shift after fine-tuning, similarly discovering insufficient calibration.

Their proposed solution is called calibrated robust fine-tuning and utilizes a variation of

label smoothing. The area of uncertainty calibration for foundational models is in early

stages, but it will likely become a popular direction because of its practical importance

and the widespread use of foundational models.
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5.7 Conclusions

We introduced a new DECE metric that accurately represents the common calibration

ECE measure and makes it differentiable. With DECE, we can directly optimize

hyperparameters for calibration and obtain competitive results with hand-designed

architectures. We believe DECE opens up a new avenue for the community to tackle

the challenge of model calibration in optimization-based ways.

∗∗∗

Uncertainty calibration of neural networks is one useful application of meta-learning.

As another application where meta-learning is beneficial we introduce the problem

of general-purpose few-shot learning. While meta-learning has been widely used in

single-task few-shot learning, we make the extensions needed to generalize existing

approaches across various computer vision task families.
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Learning-to-Learn

The content of this chapter corresponds to paper:

Meta Omnium: A Benchmark for General-Purpose Learning-To-Learn
Ondrej Bohdal, Yinbing Tian, Yongshuo Zong, Ruchika Chavhan, Da Li, Henry

Gouk, Li Guo, Timothy Hospedales

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), 2023

Meta-learning and other approaches to few-shot learning are widely studied for

image recognition, and are increasingly applied to other vision tasks such as pose

estimation and dense prediction. This naturally raises the question of whether there

is any few-shot meta-learning algorithm capable of generalizing across these diverse

task types? To support the community in answering this question, we introduce Meta

Omnium, a dataset-of-datasets spanning multiple vision tasks including recognition,

keypoint localization, semantic segmentation and regression. We experiment with

popular few-shot meta-learning baselines and analyze their ability to generalize across

tasks and to transfer knowledge between them. Meta Omnium enables meta-learning

researchers to evaluate model generalization to a much wider array of tasks than

previously possible, and provides a single framework for evaluating meta-learners

across a wide suite of vision applications in a consistent manner.

89
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6.1 Introduction

Meta-learning is a long-standing research area that aims to replicate the human ability

to learn from a few examples by learning-to-learn from a large number of learning

problems (Thrun and Pratt, 1998). This area has become increasingly important recently,

as a paradigm with the potential to break the data bottleneck of traditional supervised

learning (Hospedales et al., 2021; Wang et al., 2020). While the largest body of

work is applied to image recognition, few-shot learning algorithms have now been

studied in most corners of computer vision, from semantic segmentation (Li et al.,

2020c) to pose estimation (Patacchiola et al., 2020) and beyond. Nevertheless, most of

these applications of few-shot learning are advancing independently, with increasingly

divergent application-specific methods and benchmarks. This makes it hard to evaluate

whether few-shot meta-learners can solve diverse vision tasks. Importantly it also

discourages the development of meta-learners with the ability to learn-to-learn across

tasks, transferring knowledge from, e.g., keypoint localization to segmentation – a

capability that would be highly valuable for vision systems if achieved.

Table 6.1: Feature comparison between Meta Omnium and other few-shot meta-learning

benchmarks. Meta Omnium uniquely combines a rich set of tasks and visual domains

with a lightweight size for accessible use.

Dataset Num Tasks Num Domains Num Imgs Categories Size Lightweight Multi-Task Multi-Domain

Omniglot (Lake et al., 2015) 1 1 32K 1623 148MB ✓ ✗ ✗

MiniImageNet (Vinyals et al., 2016) 1 1 60K 100 1GB ✓ ✗ ✗

Meta-Dataset (Triantafillou et al., 2020) 1 7∼10 53M 43∼1500 210GB ✗ ✗ ✓

VTAB (Zhai et al., 2019) 1 3∼19 2.2M 2∼397 100GB ✗ ✗ ✓

FSS1000 (Li et al., 2020c) 1 1 10000 1000 670MB ✓ ✗ ✗

Meta-Album (Ullah et al., 2022) 1 10∼40 1.5M 19∼706 15GB ✓ ✗ ✓

Meta Omnium 4 21 160K 2∼706 3.1GB ✓ ✓ ✓

The overall trend in computer vision (Ghiasi et al., 2021; Radford et al., 2021) and AI

(Reed et al., 2022; Baevski et al., 2022) more generally is towards more general-purpose

models and algorithms that support many tasks and ideally leverage synergies across

them. However, it has not yet been possible to explore this trend in meta-learning, due to

the lack of few-shot benchmarks spanning multiple tasks. State-of-the-art benchmarks

(Triantafillou et al., 2020; Ullah et al., 2022) for visual few-shot learning are restricted to

image recognition across a handful of visual domains. There is no few-shot benchmark

that poses the more substantial challenge (Yu et al., 2020; Ruder, 2017) of generalizing

across different tasks. We remark that the term task is used differently in few-shot

meta-learning literature (Finn et al., 2017; Wang et al., 2020; Hospedales et al., 2021)
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Figure 6.1: Illustration of the diverse visual domains and task types in Meta Omnium.

Meta-learners are required to generalize across multiple task types, multiple datasets,

and held-out datasets.

(to mean different image recognition problems, such as cat vs dog or car vs bus) and

the multi-task literature (Yu et al., 2020; Ruder, 2017; Ghiasi et al., 2021; Yang and

Hospedales, 2015) (to mean different kinds of image understanding problems, such

as classification vs segmentation). In this chapter, we will use the term task in the

multi-task literature sense, and the term episode to refer to tasks in the meta-learning

literature sense, corresponding to a support and query set.

We introduce Meta Omnium, a dataset-of-datasets spanning multiple vision tasks

including recognition, semantic segmentation, keypoint localization/pose estimation,

and regression as illustrated in Figure 6.1. Specifically, Meta Omnium provides the

following important contributions: 1) Existing benchmarks only test the ability of

meta-learners to learn-to-learn within tasks such as classification (Triantafillou et al.,

2020; Ullah et al., 2022), or dense prediction (Li et al., 2020c). Meta Omnium uniquely

tests the ability of meta-learners to learn across multiple task types. 2) Meta Omnium

covers multiple visual domains (from natural to medical and industrial images). 3) Meta
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Omnium provides the ability to thoroughly evaluate both in-distribution and out-of-

distribution generalization. 4) Meta Omnium has a clear hyperparameter tuning (HPO)

and model selection protocol, to facilitate future fair comparison across current and

future meta-learning algorithms. 5) Unlike popular predecessors, (Triantafillou et al.,

2020), and despite the diversity of tasks, Meta Omnium has been carefully designed

to be of moderate computational cost, making it accessible for research in modestly-

resourced universities as well as large institutions. Table 6.1 compares Meta Omnium

to other relevant meta-learning datasets.

We expect Meta Omnium to advance the field by encouraging the development

of meta-learning algorithms capable of knowledge transfer across different tasks – as

well as across learning episodes within individual tasks as is popularly studied today

(Finn et al., 2017; Wang et al., 2020). In this regard, it provides the next step of the

level of a currently topical challenge of dealing with heterogeneity in meta-learning

(Triantafillou et al., 2020; Vuorio et al., 2019; Abdollahzadeh et al., 2021; Li et al.,

2021a). While existing benchmarks have tested multi-domain heterogeneity (e.g.,

recognition of written characters and plants within a single network) (Triantafillou et al.,

2020; Ullah et al., 2022) and shown it to be challenging, Meta Omnium tests multi-task

learning (e.g., character recognition vs plant segmentation). This is substantially

more ambitious when considered from the perspective of common representation

learning. For example, a representation tuned for recognition might benefit from

rotation invariance, while one tuned for segmentation might benefit from rotation

equivariance (Ericsson et al., 2022; Xiao et al., 2021; Chavhan et al., 2023). Thus, in

contrast to conventional within-task meta-learning benchmarks that have been criticized

as relying more on common representation learning than learning-to-learn (Tian et al.,

2020; Raghu et al., 2020), Meta Omnium better tests the ability of learning-to-learn

since the constituent tasks require more diverse representations. Code and dataset are

available at https://edi-meta-learning.github.io/meta-omnium.

6.2 Related Work

6.2.1 Meta-Learning Benchmarks

The classic datasets in few-shot meta-learning for computer vision are Omniglot (Lake

et al., 2015) and miniImageNet (Vinyals et al., 2016). Later work criticized these

for having insufficient task (episode) diversity and tieredImageNet (Ren et al., 2018a)

https://edi-meta-learning.github.io/meta-omnium
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used the class hierarchy of ImageNet to enforce more diversity between meta-train

and meta-test episodes. The main contemporary benchmarks are CD-FSL (Guo et al.,

2020), which challenges few-shot learners to generalize to new visual domains; and

Meta-Dataset (Triantafillou et al., 2020) and Meta-Album (Ullah et al., 2022), which

go further in requiring few-shot learners to learn from a mixture of visual domains.

Such multi-domain heterogeneous meta-learning turns out to be challenging. A related

benchmark to Meta-Dataset is VTAB (Zhai et al., 2019), which similarly provides

multiple domains for evaluating data-efficient visual recognition, but their focus is on

evaluating representation transfer from large-scale pre-training rather than learning-to-

learn and meta-learning. VTAB+MD (Dumoulin et al., 2021) compare representation

transfer and meta-learning approaches on the Meta-Dataset tasks. However, none of

these benchmarks address multi-task meta-learning as considered here (Figure 6.1).

Outside of recognition, task-specific few-shot benchmarks have been proposed in

vision problems of semantic segmentation (Li et al., 2020c), regression (Gao et al.,

2022b), pose/keypoint estimation (Xu et al., 2022), etc. These are mostly slightly behind

the complexity of the recognition benchmarks with regards to being single-domain,

with the exception of (Xu et al., 2022). With regard to multi-task meta-learning as

considered here, the only existing benchmark is Meta-World (Yu et al., 2019), which is

specific to robotics and reinforcement learning rather than vision.

We also mention Taskonomy (Zamir et al., 2018) as a popular dataset that has been

used for multi-task learning. However, it is not widely used for few-shot meta-learning.

This is because, although Taskonomy has many tasks, unlike the main meta-learning

benchmarks (Triantafillou et al., 2020; Li et al., 2020c), there are not enough visual

concepts within each task to provide a large number of concepts for meta-training

and a disjoint set of concepts to evaluate few-shot learning for meta-validation and

meta-testing.

6.2.2 Heterogeneity in Meta-Learning

There are several sophisticated methods in the literature that highlighted the challenge

of the task to address heterogeneity in meta-learning. These have gone under various

names such as multi-modal meta-learning (Vuorio et al., 2019; Abdollahzadeh et al.,

2021; Liu et al., 2021) – in the sense of multi-modal probability distribution (over

tasks/episodes). However, with the exception of (Liu et al., 2021), these have mostly

not been shown to scale to the main multi-modal benchmarks such as Meta-Dataset
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(Triantafillou et al., 2020). A more common approach to achieving high performance

across multiple heterogeneous domains such as those in Meta-Dataset is to train an

ensemble of feature extractors across available training domains, and fuse them during

meta-testing (Dvornik et al., 2020; Li et al., 2021b,b). However, this obviously incurs

a substantial additional cost of maintaining a model ensemble. In our evaluation, we

focus on the simpler meta-learners that have been shown to work in challenging multi-

domain learning scenarios (Triantafillou et al., 2020; Ullah et al., 2022), while leaving

sophisticated algorithmic and ensemble-based approaches for future researchers to

evaluate on the benchmark.

6.3 Meta Omnium Benchmark and Datasets

6.3.1 Motivation and Guiding Principles

We first explain the motivating goals and guiding principles behind the design of Meta

Omnium. The goal is to build a benchmark for multi-task meta-learning that will: 1)

Encourage the community to develop meta-learners that are flexible enough to deal

with greater task heterogeneity than before, and thus are more likely to be useful in

practice with less curated episode distributions. This was identified as a major challenge

in the discussion arising in several recent meta-learning and computer vision workshops

and challenges. 2) Ultimately progress on this benchmark should provide practical

improvements in data-efficient learning for computer vision through the development

of methods that can better transfer across different task types.

In developing this benchmark, we established a few principles that we used to guide

design choices. These include: 1) The benchmark should be lightweight in terms of

storage and computing, making it accessible to a broad range of researchers and not only

large corporations. 2) The benchmark should cover multiple tasks with heterogeneous

output spaces (as opposed to all classification, all regression, or all dense prediction),

as well as multiple visual domains. In these regards, Meta Omnium is compared to

alternatives in Table 6.1. 3) The initial baselines should have only minimal task-specific

decoders. This is in contrast to the state of the art within various sub-disciplines of FSL

such as segmentation (Min et al., 2021; Hong et al., 2022), keypoint (Lu and Koniusz,

2022; Xiao and Marlet, 2020), and classification (Afrasiyabi et al., 2022; Ye et al., 2020)

where specially designed decoders are often used. This is to evaluate and encourage

future research on learning-to-learn across tasks, rather than primarily benchmarking
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how well we can manually engineer prior knowledge of optimal task-specific decoders.

While we are not opposed to future competitors on this benchmark developing task-

specific decoders, these should be evaluated separately against the minimal-decoder

competitors. 4) The benchmark should provide distinct datasets for in-distribution

(ID) training and out-of-distribution (OOD) evaluation, to evaluate the robustness of

the distribution-shift. This is already provided by (Triantafillou et al., 2020; Ullah

et al., 2022) for classification, and we extend such an ID and OOD dataset ensemble

to multiple tasks. Figure 6.2 illustrates our dataset and task-split. 5) The benchmark

should provide a clear hyperparameter tuning protocol. With a number of recent studies

showing that hyperparameter tuning can dominate other effects of interest in computer

vision (Gulrajani and Lopez-Paz, 2021; Musgrave et al., 2021; Li et al., 2022), this is

important for a future-proof meta-learning benchmark. This is also related to the first

cost point 1) above: Only for a benchmark with a modest cost can most institutions

realistically expect to conduct hyperparameter tuning. We provide the hyperparameter

tuning protocol. 6) Finally, following the debate in (Tian et al., 2020; Raghu et al., 2020;

Li et al., 2021a) as to the value of meta-learning vs conventional transfer learning, the

dataset should support both episodic meta-learning and conventional transfer learning

approaches.

6.3.2 Data Splits and Tasks

For each main task (classification, segmentation, keypoint localization), we split the

datasets into seen datasets available for meta-training, and unseen datasets that are

completely held out for out-of-domain meta-validation and meta-testing. Similarly

to (Triantafillou et al., 2020; Ullah et al., 2022), for the seen datasets, we construct

category-wise splits into meta-train/val/test. While for the unseen datasets, there is no

category-wise split as episodes from all categories from the whole dataset will be used

for validation and testing respectively. The overall split organization is illustrated in

Figure 6.2. We additionally have a completely held-out task: regression. Datasets from

this task are not used during meta-training.

Our multi-task setup enables us to define and compare two training protocols: Single-
task meta-learning (STL) which evaluates how well meta-learning performs when

trained and tested within a particular task family (within each plate in Figure 6.2); and

Multi-task meta-learning (MTL) which evaluates how well meta-learning performs

when trained across all available task families (across all plates in Figure 6.2).
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Figure 6.2: Schematic of benchmark and dataset splits. For each task, there are multiple

datasets, which are divided into seen (solid border) and unseen (dash border) datasets.

The seen (ID) datasets are divided class-wise into meta-train/meta-val/meta-test splits.

The unseen datasets are held out for out-distribution (OD) evaluation. Meta-training is

conducted on the ID-meta-train split of the seen datasets (blue). Models are validated

on ID validation class splits, or OD validation datasets (green). Results are reported on

the ID test class splits and OD test datasets (orange). We also hold out an entire task

family (regression) for evaluating novel task generalization.

With this organization we can separately evaluate: Within-distribution generaliza-
tion (ID): How well do meta-learners generalize to novel test concepts within the seen

datasets?; and Out-of-distribution generalization (OOD): How well do meta-learners

generalize to novel concepts in unseen datasets?

We provide two sources of validation data: ID and OOD, and our models are selected

based on the combined performance across both. OOD validation is not supposed by the

most popular Meta-Dataset benchmark (Triantafillou et al., 2020) as despite its larger

size it does not provide OOD validation datasets.

6.3.3 Datasets and Metrics

Given the considerations in Section 6.3.1, our benchmark consists of three main tasks

(classification, segmentation, keypoints/pose) and one held-out task (regression).
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Classification For classification we take the 10 datasets from the initial public release

of Meta-Album (Ullah et al., 2022). These images are all 128×128 and contain 19–706

classes per dataset, with 40 images per class. Three of these datasets are reserved for

out-of-distribution meta-validation, and four for out-of-distribution meta-test.

Segmentation For segmentation, we take FSS1000 (Li et al., 2020c) for in-distribution

(10,000 images, 1,000 classes), and combine it with VizWiz (Tseng et al., 2022) for

OOD meta-validation (862 images, 22 classes), and modified Pascal5i (Shaban et al.,

2017) (7,242 images, 6 classes) and the very distinct medical imaging dataset PH2

(Mendonça et al., 2013) (200 images, 3 classes) for meta-testing. The segmentation

images originally were of diverse sizes. We resize them all to 224× 224 for Meta

Omnium. Note that VizWiz and Pascal datasets originally contain more classes and

images. We exclude the classes that overlap with those in the FSS1000 dataset for

few-shot learning, and thus there are no classes overlapping among all the datasets.

Keypoints For keypoint (pose) estimation, we take animal-pose (Cao et al., 2019)

for in-distribution, synthetic animal-pose (Mu et al., 2020) for OOD meta-validation,

and MPII human-pose (Andriluka et al., 2014) for OOD meta-testing. All images

are resized to 128× 128. MPII includes about 40k people in over 25k images with

annotated body keypoints. Animal Pose includes 5 animal categories for 6K instances

in over 4k images. Each animal is cropped from the original image. We keep cats and

dogs for training, horses and sheep for in-domain validation, and cow for in-domain

testing. Synthetic animal pose generates synthetic images using animal CAD models

rendered from various viewpoints and lightings on a random background. We keep only

the horse and tiger categories in our final datasets.

Regression For evaluating regression as a held-out task, we use four datasets corre-

sponding to the test splits of (Gao et al., 2022b): ShapeNet1D, ShapeNet2D, Distractor

and Pascal1D (Yin et al., 2020). All images are resized to 128×128. ShapeNet1D aims

to predict azimuth angles. It contains 30 categories in total and we keep the 3 categories

from the test set. ShapeNet2D further includes 2D rotation with azimuth angles and

elevation. The test set of ShapeNet2D contains 300 categories in total with 30 images

per category. Distractor aims to predict the position of a target object in the presence

of a distractor. It contains 12 categories in total and the test set has 2 categories. Each

category contains 1000 objects with 36 images for each. Pascal1D aims to predict

azimuth angle. The whole Pascal1D contains 65 objects from 10 categories. The test set

contains 15 objects with 100 images for each object. Appendix D provides full details

of all datasets and splits.
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6.3.4 Training API

For episodic learning, we proceed by 1) sampling a task, 2) sampling a dataset, 3)

sampling an episode. Under our main protocol we consider variable 1 to 5-shot evalu-

ation, but also evaluate separate 1 and 5 shot settings (training is always done with a

variable number of shots – support examples). For classification tasks, we follow (Ullah

et al., 2022) in generating 5-way episodes. For segmentation tasks, we follow (Li et al.,

2020c) in considering each episode to be a binary foreground/background classification

problem for a novel class and generate 2-way episodes. For keypoint, we form episodes

by randomly selecting a class (e.g., animal category) and then randomly selecting a

subset of 5 keypoints to localize for each episode. For regression tasks, we generate

variable 5 to 25-shot episodes because it is a common practice to use more shots for

regression tasks (Gao et al., 2022b).

For non-episodic/transfer learning, we provide access to the meta-train portions

of the seen datasets in conventional mini-batches for conventional single task and

multi-task supervised learning.

Evaluation Metrics For classification tasks, we use top-1 accuracy; for segmentation

tasks, we use mean intersection-over-union (mIOU) that averages over IoU values

of all object classes; for keypoint prediction, we report the Percentage of Correct

Keypoints (PCK). In detail, a detected joint is considered correct if the distance between

the predicted and the true joint is within a certain threshold. In our experiments, the

threshold is 0.01 for normalized value, which stands for about 12.8 pixel of input image

resolution. For regression tasks, we follow (Gao et al., 2022b) and use the same metrics.

6.3.5 Architecture and Baseline Competitors

As discussed in Section 6.3.1, we aim to establish baselines that can be adapted to

tasks with heterogeneous outputs, with minimal reliance on task-specific decoders. We

follow (Triantafillou et al., 2020; Ullah et al., 2022) in using a ResNet18 CNN (He

et al., 2016) as a feature extractor architecture. For recognition tasks, we perform

multi-class classification immediately after ResNet’s Global Average Pooling (GAP).

For regression tasks, we perform linear regression directly after the ResNet’s GAP.

For keypoint tasks, we consider them to be a regression problem from the feature map

to the keypoint location. For segmentation tasks, we use a simplified PSPNet-like

(Zhao et al., 2017) strategy. We concatenate the extracted feature maps from ResNet’s

feature pyramid, with upsampling where appropriate, to generate a feature map of size



Chapter 6. Meta Omnium: General-Purpose Learning-to-Learn 99

w×h, and then do pixel-wise classification with 1×1 convolutional layer to obtain the

final segmentation map. All tasks thus have only one learnable weight as a minimal

classifier/decoder after the common ResNet feature encoder. Based on this common

encoder and minimal decoder architecture, we describe our meta-learning baselines.

Prototypical Network (Snell et al., 2017) is a classic meta-learner that exploits

nearest-centroid metric learning for few-shot classification. ProtoNets were adapted to

segmentation tasks in PANet (Wang et al., 2019a), by performing pixel-level feature

matching between support prototypes and query pixels. We use the same principle

together with the PSPNet-like features described earlier. To generalize ProtoNets to

regression tasks such as keypoint prediction, we must relax the prototype assumption,

and use them as simple Gaussian kernel-regression models (Bishop, 2006). Specifi-

cally, we generate a feature embedding for each support example, and then for query

examples, we calculate the negative exponential distance to the support examples, and

use this inverse distance-weighted sum of support set labels as the prediction. Thus for

regression tasks with a support set S = {(xi,yi)} and query example xq, ProtoRegression

predicts

f (yq|xq,S) ∝ ∑
i

yi exp(−τ( fθ(xi)− fθ(xq))
2) (6.1)

enabling us to learn deep feature fθ in the usual episodic meta-learning way. We use

cross-entropy loss for classification and segmentation, and MAE loss for regression

tasks.

DDRR Deep differentiable ridge-regression has been considered for few-shot recogni-

tion (Bertinetto et al., 2019), tracking (Zheng et al., 2020a), and other tasks. It is related

to ProtoNet in that the feature is not adapted after the meta-train stage, but different in

that the decoder/classifier layer is learned by differentiable ridge-regression rather than

nearest centroid or kernel regression. An elegant property of DDRR methods is that they

naturally address regression tasks, although they have been repurposed for classification

(Bertinetto et al., 2019) by conducting MSE-loss regression to a target 1-hot vector.

Thus they are a natural choice for our benchmark. For application to segmentation, we

apply DDRR in a 1× 1 convolution-like way, to perform pixel classification for the

output mask with a DDRR classifier at each pixel. Further, we calibrate the prediction

for binary cross entropy loss with a learnable scale and bias following (Bertinetto et al.,

2019). DDRR uses MAE loss for regression tasks and MSE loss for other tasks.

MAML The seminal few-shot meta-learner MAML (Finn et al., 2017) aims to learn

an initial condition for per-episode gradient-descent. MAML is straightforward to
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adapt to different types of tasks. Based on each episode’s support set, a new output

layer is learned, and the feature extractor is updated, both by a few steps of gradient

descent. Similarly to Meta-Dataset (Triantafillou et al., 2020), we do not learn an

initialization for the output layer, since it can change size between episodes drawn from

multiple tasks. To alleviate this challenge, we also follow Meta-Dataset in evaluating

Proto-MAML – a variant that initializes the MAML output layer based on the linear

classifier/regressor suggested by nearest-centroid prior to gradient descent. Going

beyond this, to adapt Proto-MAML to regression tasks, we also initialize the output

layer based on the ridge-regression solution to the support set.

Meta-Curvature Meta-Curvature (Park and Oliva, 2019) is an enhancement of

MAML that learns a pre-conditioning matrix to improve inner-loop adaptation, as

well as an initial condition as in standard MAML. Meta-Curvature outperforms MAML

in simpler single-task few-shot benchmarks.

Transfer Learning We also consider standard supervised learning on the meta-train

tasks for transfer to the target tasks, a strategy reported to be competitive with meta-

learning (Tian et al., 2020). For adaptation, we explore both linear readout (Wang et al.,

2019b; Tian et al., 2020) and fine-tuning (Ullah et al., 2022). Besides learning a new

output layer from scratch, we also consider a fine-tuning version that initializes the

classifier weights using class prototypes (recognition/segmentation) or ridge regression

weights (keypoints/regression), inspired by Proto-MAML.

Train-from-Scratch (TFS) We lastly consider training each episode from scratch

using only the support set (Ullah et al., 2022).

6.3.6 Hyperparameter Optimization

As part of our benchmark, we perform hyperparameter optimization (HPO) to ensure we

select appropriate hyperparameters for the diverse tasks that we consider. Multiobjective

HPO under restricted resources is challenging, so we devise the following HPO protocol:

estimate the performance of each candidate configuration on a lower fidelity (lower

number of iterations) and then identify the configuration that works the best across all

validation datasets considered (combination of in-domain and out-of-domain datasets,

across various task families). Note that fast multi-fidelity methods such as Hyperband

(Li et al., 2018b), ASHA (Li et al., 2020a) or PASHA (Bohdal et al., 2023a) are

not applicable out of the box in our multi-objective setup, so we decided to train

each candidate configuration using fixed 5,000 training iterations. Since different



Chapter 6. Meta Omnium: General-Purpose Learning-to-Learn 101

tasks/datasets are of different difficulties (and use different metrics), we normalize

the score of each configuration for each validation dataset by the best score for that

dataset across all candidate configurations. We then select the configuration with the

best average normalized score.

Note that due to resource constraints we are only able to sample a relatively smaller

number of candidates (30), so we utilize a sample efficient state-of-the-art Multi-

Objective TPE method (Ozaki et al., 2020), available from the Optuna library (Akiba

et al., 2019). We perform HPO for multi-task and single-tasks setups separately, so

single task classification, segmentation and keypoint estimation have their own set

of hyperparameters; and the multi-task case has its own set. The hyperparameters

include the meta-learning rate and optimizer, momentum, and various method-specific

hyperparameters (full details are in Appendix D). Once the hyperparameters are chosen,

we perform standard training of the model for the full number of iterations.

6.4 Experiments

In this section, we aim to use our benchmark to answer the following questions: 1)

Which meta-learner performs best on average across a heterogenous range of tasks?

Existing benchmarks have evaluated meta-learners for one task at a time, we now use

our common evaluation platform to find out if any meta-learner can provide general-

purpose learning to learn across different task types, or whether each task type prefers

a different learner. Similarly, we can ask which meta-learner is most robust to out-of-

distribution tasks? 2) Having defined the first multi-task meta-learning benchmark,

and generalizations of seminal meta-learners to different kinds of output spaces, we

ask which meta-learner performs best for multi-task meta-learning? More generally,

is there a trend in gradient-based vs metric-based meta-learner success? 3) Does

multi-task meta-learning improve or worsen performance compared to single-task? The

former obviously provides more meta-training data, which should be advantageous, but

the increased heterogeneity across meta-training episodes in the multi-task case also

makes it harder to learn (Vuorio et al., 2019; Triantafillou et al., 2020). 4) How does

meta-learning perform compared to simple transfer learning, or learning from scratch?
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6.4.1 Experimental Settings

We train each meta-learner for 30,000 meta-training iterations, with meta-validation

after every 2,500 iterations (used for checkpoint selection). For evaluation during

meta-testing we use 600 tasks for each corresponding dataset, and for meta-validation

we use 1200 tasks together. We use random seeds to ensure that the same tasks are

used across all methods that we compare. For transfer learning approaches (fine-tuning,

training from scratch, etc.), we use 20 update steps during evaluation. We only retain

the meta-learned shared feature extractor across tasks, and for each new evaluation task,

we randomly initialize the output layer so that we can support any number of classes as

well as novel task families during meta-testing (in line with (Ullah et al., 2022)).

6.4.2 Results

The main experimental results are shown in Table 6.2, where rows correspond to

different few-shot learners, and columns report the average performance on test episodes,

aggregated across multiple datasets in each task family, and broken down by “seen”

datasets (ID) and “unseen” datasets (OOD). The table also reports the average rank of

each meta-learner across each dataset, both overall and broken down by ID and OOD

datasets. More specifically, for each setting (e.g. cls. ID) we calculate the rank of each

method (separately for STL and MTL), and then we average those ranks across cls., seg.

and keypoints. From the results, we can draw the following main conclusions:

1) ProtoNet is the most versatile meta-learner, as shown by its highest average rank

in the single-task scenario. This validates our novel Kernel Regression extension of

ProtoNet for tackling regression-type keypoint localization tasks. Somewhat surpris-

ingly, ProtoNet is also the most robust to out-of-distribution episodes (OOD) which is

different from the conclusion of (Triantafillou et al., 2020) and others who suggested

that gradient-based adaptation is crucial to adapt to OOD data. However, it is also in

line with the results of (Ullah et al., 2022) and the strong performance of prototypes

more broadly (Bohdal et al., 2022).

2) Coming to multi-task meta-learning the situation is similar in that ProtoNet

dominates the other competitors, but now sharing the first place with Proto-MAML.

3) To compare single-task and multi-task meta-learning (top and bottom blocks of

Table 6.2) more easily, Figure 6.3 shows the difference in meta-testing episode perfor-

mance after STL and MTL meta-training for each method. Overall STL outperforms

the MTL condition, showing that the difficulty of learning from heterogeneous tasks
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Table 6.2: Main Results. Results are presented as averages across the datasets

within each task type and separately for in-distribution (ID) and out-of-distribution (OOD)

datasets. Classification, segmentation, and keypoint results are reported in accuracy

(%), mIOU (%), and PCK (%) respectively. The upper and lower groups correspond

to multi-task and single-task meta-training prior to evaluation on the same set of meta-

testing episodes. Upper and lower sub row groups correspond to meta-learners and

non-meta learners respectively. See Appendix D for a full breakdown over individual

datasets.

Classification Segmentation Keypoints Average Rank
ID OOD ID OOD ID OOD ID OOD AVG

Si
ng

le
-T

as
k

MAML 58.7 61.6 54.7 42.1 25.4 33.0 4.3 3.3 3.8

Proto-MAML 50.5 49.7 46.4 44.1 23.6 22.5 6.0 6.3 6.2

Meta-Curvature 64.8 61.4 65.6 49.8 43.5 16.0 2.0 4.3 3.2

ProtoNet 70.4 59.4 75.8 57.2 27.8 33.3 1.3 1.7 1.5
DDRR 63.1 58.7 66.7 48.0 20.5 31.9 4.7 3.7 4.2

Proto-FineTuning 50.8 50.7 60.0 43.4 21.3 33.1 5.3 4.3 4.8

FineTuning 42.3 48.2 50.5 40.0 25.7 30.0 5.7 6.7 6.2

Linear-Readout 48.6 53.4 34.0 22.7 22.1 26.9 7.3 6.7 7.0

TFS 31.5 42.0 42.8 37.6 21.0 26.0 8.3 8.0 8.2

M
ul

ti-
Ta

sk

MAML 59.1 58.5 43.3 37.4 24.3 23.9 2.7 4.7 3.7

Proto-MAML 58.5 63.7 53.0 43.2 21.6 33.3 3.0 1.7 2.3
Meta-Curvature 70.4 66.9 42.6 34.5 18.2 25.3 4.3 4.7 4.5

ProtoNet 65.9 58.8 63.3 49.7 20.1 33.0 2.7 2.0 2.3
DDRR 52.8 51.9 40.4 37.3 22.8 30.1 5.0 4.7 4.8

Proto-FineTuning 52.4 53.2 44.8 37.8 21.2 30.0 4.3 4.0 4.2

FineTuning 44.1 51.2 41.3 36.1 18.1 20.5 7.7 7.0 7.3

Linear-Readout 46.0 50.9 41.5 32.6 19.9 23.5 6.3 8.0 7.2

TFS 21.9 23.8 38.7 35.8 14.1 11.0 9.0 8.3 8.7

(Yu et al., 2020; Ruder, 2017) outweighs the benefit of the extra multi-task data.

4) Finally, comparing meta-learning methods with simple transfer learning methods

as discussed in (Tian et al., 2020; Dumoulin et al., 2021), the best meta-learners are

clearly better than transfer learning for both single and multi-task scenarios.

We also note that Proto-MAML is better than MAML in the multi-task case, likely

due to the importance of a good output-layer initialization in the case of heterogeneous
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episodes, as per (Triantafillou et al., 2020). Meta-Curvature outperforms MAML in

single-task in-domain scenarios, in line with previous results (Park and Oliva, 2019),

but it did not achieve stronger performance out-of-domain or in the multi-task case.

Finally, while DDRR is perhaps the most elegant baseline in terms of most naturally

spanning all task types, its overall performance is middling.
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Figure 6.3: Analysis of the differences in scores between single-task (STL) and multi-task

(MTL) learning for different methods.

6.4.3 Additional Analysis

How Well Can Multi-Task Meta-Learners Generalize to Completely New Held-Out
Tasks? We take the multi-task meta-learners (trained on classification, segmentation,

keypoints) and evaluate them on four regression benchmarks inspired by (Gao et al.,

2022b): ShapeNet1D, ShapeNet2D, Distractor and Pascal1D. Because the metrics differ

across datasets, we analyse the rankings and summarise the results in Table 6.3. We

see the basic TFS performs the worst, with MAML, ProtoNets, DDRR being the best.

However, in several cases the results were not better than predicting the mean (full

results in Appendix D), showing that learning-to-learn of completely new task families

is an open challenge.

Table 6.3: Average ranking of the different methods across four out-of-task regression

datasets.

MAML PMAML MC PN DDRR PFT FT LR TFS

3.3 6.5 4.8 3.5 3.5 3.8 5.8 4.3 8.5

How Much Does External Pre-Training Help? Our focus is on assessing the effi-

cacy of meta-learning rather than representation transfer, but we also aim to support

researchers investigating the impact of representation learning on external data prior to
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Table 6.4: Analysis of the impact of external data pretraining for selected meta-learners

in multi-task learning condition. The results show that ImageNet pretraining does not

necessarily help improve performance. Cls., Segm., Keyp. represent classification,

segmentation and keypoint respectively.

Method Pretrain
Cls. Segm. Keyp.

ID OOD ID OOD ID OOD

Proto-MAML ✗ 58.5 63.7 53.0 43.2 21.6 33.3

ProtoNet ✗ 66.0 58.8 63.3 49.7 20.1 33.0

Proto-MAML ✓ 63.9 62.7 56.2 45.3 21.8 33.3

ProtoNet ✓ 63.5 58.6 62.0 49.0 20.1 33.1

meta-learning (Zhai et al., 2019; Dumoulin et al., 2021; Hu et al., 2022). We therefore

specify evaluation conditions where external data outside our defined in-distribution

meta-training set is allowed.

We take two high-performing approaches in the multi-task scenario, Proto-MAML

and ProtoNet, and we investigate to what extent external pre-training helps. We use

the standard ImageNet1k pre-trained ResNet18, prior to conducting our meta-learning

pipeline as usual. We use the same hyperparameters as selected earlier for these models

to ensure consistent evaluation, and ensure that the differences in performance are

not due to a better selection of hyperparameters. The results in Table 6.4 show that

pretraining is not necessarily helpful in the considered multi-task setting, in contrast to

purely recognition-focused evaluations (Zhai et al., 2019; Dumoulin et al., 2021; Hu

et al., 2022), which were unambiguously positive about representation transfer from

external data.

Analysis of Runtimes We analyze the times that the different meta-learning ap-

proaches spend on meta-training, meta-validation and meta-testing in the multitask

learning case of our benchmark. The results in Table 6.5 show that all experiments are

relatively lightweight, despite the ambitious goal of our benchmark to learn a meta-

learner that can generalize across various task families. Most notably we observe that

ProtoNets are the fastest approach, alongside being the best-performing one. Note that

fine-tuning and training from scratch are expensive during the test time as they use

backpropagation with a larger number of steps.

Discussion and Future Work In future Meta Omnium can be used in a variety of

ways beyond benchmarking multi-task meta-learning per-se. These include: studying

the multi-task optimization (Yu et al., 2020) in meta-learning, studying HPO for meta-
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learning, developing validation strategies in meta-learning (using ID vs OD val. sets (Li

et al., 2022)), and studying the benefit of task-specific decoders and external data.

Table 6.5: Analysis of times needed by different algorithms in the multitask setting (using

one NVIDIA 1080 Ti GPU and 4 CPUs).

Method Train Time Val Time Test Time Total Time

MAML 1.8h 1.9h 0.9h 5.0h

Proto-MAML 1.9h 1.9h 0.9h 5.1h

Meta-Curvature 3.4h 2.6h 1.3h 7.6h

ProtoNet 0.8h 0.4h 0.2h 1.8h

DDRR 1.4h 0.6h 0.3h 2.7h

Proto-FineTuning 1.7h 4.5h 2.3h 8.9h

FineTuning 1.5h 8.1h 4.9h 14.9h

Linear-Readout 1.2h 5.1h 2.8h 9.6h

TFS 0.0h 0.8h 6.2h 7.0h

Considering our earlier contributions in this thesis, EvoGrad can be used to make

MAML, one of the approaches that we evaluated on Meta Omnium, first-order and

hence more efficient. However, it is not needed since direct first-order approximation

exists for the case of few-shot learning where we try to meta-learn the neural network

weight initialization. PASHA could be considered for optimizing the hyperparameters of

the different meta-learning approaches, but as we have noted earlier, it is not applicable

out of the box in our multi-objective setup. As a result, non-trivial extensions would

be needed. Uncertainty calibration would be valuable also in the case of few-shot

learning classification, so one could try to design an approach that extends the ideas

from Meta-Calibration. For example, it could be possible to also add label smoothing as

a meta-parameter that is trained across tasks, with the outer loop objective regularized

with DECE.

6.5 Further Developments

Few-shot learning continues to be a practically valuable problem setting and remains an

active area of research, especially in cross-domain scenarios. A recent approach that

obtains state-of-the-art results performs neural fine-tuning search (Eustratiadis et al.,

2024), showing how techniques from neural architecture search can be valuable also

in few-shot learning settings. Other recent approaches include Task-aware adaptive

network (Guo et al., 2023), which estimates a parameter configuration for each task and
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DiffKendall (Zheng et al., 2023) that improves performance of metric-based methods by

using differentiable Kendall’s rank correlation as the similarity metric. New approaches

continue to be developed also for diverse practical applications, including 3D point cloud

object detection (Tang et al., 2023), video classification (Xia et al., 2023), industrial

anomaly detection (Fang et al., 2023), image generation (Li et al., 2023) or novel

view synthesis (Seo et al., 2023). Our Meta Omnium has been released only relatively

recently and so is yet to be utilized by other researchers. Nevertheless, it has been

included in a survey on few-shot learning by Tsoumplekas et al. (2024), and highlighted

for enabling evaluation of generalization across various learning problems. We believe

Meta Omnium has potential and will receive attention thanks to its usefulness for

studying few-shot learning in more ambitious setups as well as its accessibility.

Few-shot learning is also increasingly often studied as part of foundational models.

It has been shown that language models such as GPT-3 (Brown et al., 2020), or vision-

language models such as CLIP (Radford et al., 2021) and Flamingo (Alayrac et al.,

2022) offer strong few-shot learning abilities. As a result, there has been growing

interest in using these models for few-shot learning. The area has also become known

as in-context learning because the few examples serve as context for the responses given

by the large models (Dong et al., 2023).

6.6 Conclusions

We have introduced Meta Omnium, the first multi-task few-shot meta-learning bench-

mark for computer vision. The benchmark is challenging in multiple highly topical ways

such as requiring learning on heterogeneous task distributions, evaluating generalization

to out-of-distribution datasets, and uniquely challenging meta-learners to learn-to-learn

and transfer knowledge across tasks with heterogeneous output spaces. Meta Omnium

is nevertheless lightweight enough to be of broad interest and use for driving future

research, including research in hyperparameter optimization for meta-learning.

∗∗∗

We have showcased two novel applications of meta-learning. As a general tool, meta-

learning can be used in many more applications, and we hope our work will inspire

further research in how meta-learning can be used to solve various other challenges. We

discuss several options as part of the conclusion. We also include a wider discussion of

the remaining limitations and options for future research more broadly.
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Conclusion

7.1 Summary

Meta-learning enables both living organisms and machines to learn how to improve their

learning process. In the context of deep learning it has led to various practical benefits,

offering a good solution to multiple challenges, including learning new concepts from a

few examples, finding strong neural network architectures and improved robustness to

domain shift. Despite these successes, meta-learning is known to be computationally

expensive, making it difficult to apply it to many problems where it could be helpful for

solving them.

As part of this thesis we have developed two new algorithms for meta-learning and

also applied meta-learning to solve two challenges. Our new meta-learning algorithms

significantly improve the efficiency of meta-learning, making it possible to use meta-

learning for larger models and problem settings. We have also applied meta-learning

as a novel solution to two challenging problems: calibration of neural networks and

general-purpose few-shot learning.

7.1.1 Efficient Algorithms for Meta-Learning

The first efficient meta-learning algorithm that we have presented is named EvoGrad.

The approach focuses on resolving a key bottleneck present in gradient-based bilevel

optimization of many meta-parameters. More specifically, the bottleneck is that expen-

sive higher-order gradients arise from backpropagating through inner loop that involves

updating parameters of the neural network model using backpropagation.

As part of EvoGrad we replace the inner loop by an evolutionary update, and we
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keep the outer loop gradient-based so that we can meta-learn precise values of the

meta-parameters. The evolutionary update in the inner loop is only a simulation of

the training step to improve efficiency. To ensure strong performance of the trained

neural network, the actually-used update to the parameters of the neural network is

done separately after the inner loop and uses backpropagation. Overall this way of

meta-learning leads to large savings in time and memory. At the same time, it maintains

or even improves over the performance of the models that are trained with standard

meta-learning approaches.

The second approach that we have presented in this thesis is called PASHA. PASHA

can optimize any type of meta-parameters and is suitable when there is a smaller

number of meta-parameters. It targets inefficiencies coming from training sampled

configurations for longer than needed for finding a strong configuration. PASHA starts

with a small amount of resources available for each configuration and then progressively

expands them based on the need. More specifically it evaluates the stability of rankings

of the sampled configurations. If the rankings are stable, it is a sign we do not need to

add more resources and the search for strong meta-parameters can be stopped.

Finding an amount of resources that avoids inefficiencies is challenging without

adaptive strategies such as PASHA, and so the amount of resources used is typically

far larger than needed. PASHA hence leads to large speedups, for example being three

times as fast, while identifying similarly-performing configurations. For large datasets

the speedups can be even larger, for example more than ten times as fast. Crucially,

PASHA is simple to use as it automates the selection of its key parameters that evaluate

the stability of rankings.

7.1.2 New Applications of Meta-Learning

We have used meta-learning to develop novel solutions to two challenges, the first of

which is calibration of neural networks. Calibration is an important problem within deep

learning as it concerns to what extent we can rely on the confidence of the prediction

estimated by a neural network. If the neural network is not confident, it is a sign that

we should be careful about the given prediction and potentially use a more advanced

model or ask a person in the specific situation. However, if the neural network is not

well-calibrated, it can be over-confident, potentially posing safety risks.

We have used meta-learning to learn suitable values of non-uniform label smoothing

and optimize for well-calibrated models that obtain similar accuracy. By meta-learning



Chapter 7. Conclusion 110

non-uniform label smoothing we have been able to obtain excellent calibration that

surpasses the calibration obtained using standard methods. Our approach has shown

that by casting calibration as a meta-learning problem we can define calibration as a

higher-level objective and optimize for it.

We have also applied meta-learning as a solution to a newly defined problem of

general-purpose few-shot learning in the area of computer vision. As part of this

problem setting we test the ability of few-shot learners to adapt to tasks from multiple

task families, including recognition, segmentation, keypoint estimation and regression.

Earlier computer vision benchmarks only evaluated for ability to generalize across

domains, e.g. from general images to images of birds, but we push the boundaries and

challenge the different few-shot learners to a significantly larger degree. In our case

the generalization is across different task families, rather than only within classification

tasks or only segmentation tasks.

In order to test for such general-purpose few-shot learning abilities, we have de-

veloped a new benchmark and also extended the existing few-shot learners to support

multi-task learning. Using our benchmark we have been able to identify which few-shot

learning approaches are the most powerful in terms of general-purpose few-shot learn-

ing, as well as study a variety of other questions related to this setting. Most notably, our

experiments have confirmed the benefits of using meta-learning for multi-task few-shot

learning, as opposed to simply using transfer learning methods. Finally, our benchmark

has been designed to be lightweight so that it can attract wide attention and be easy to

use for researchers with various levels of resources.

7.2 Discussion

Our work has introduced two algorithms for more efficient meta-learning and also show-

cased two applications where meta-learning can be impactful. Nevertheless, efficiency

of meta-learning remains an open challenge, and there are also more applications where

meta-learning could make an impact.

Meta-learning takes various forms and in our work we have focused on two of

them. EvoGrad has focused on the case where we meta-learn suitable meta-parameters

alongside training the main model. This form of meta-learning is known to suffer

from short-horizon bias or greediness due to using only partial one-step or few-step

training unrolls in the inner loop, which means the meta-parameters are unlikely to

be optimal. In practice it means that such online meta-learning can be harder to apply
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out of the box. Substantial work is required to find a combination of meta-parameters

and meta-learning schedule that works well and leads to improvements over existing

manually developed baselines. In some cases casting a high-level problem (such as

calibration of neural networks) as a meta-learning problem will simplify the challenge

and save significant time, but in other cases it can be easier to find a good solution

manually without redefining the problem. As a result it could be said that current online

meta-learning algorithms are not sufficiently robust and more work is needed to make

them easier to apply successfully.

Our second method, PASHA, has focused on a part of meta-learning commonly

known as hyperparameter optimization. In this case the approach does not suffer from

short-horizon bias and could be seen as more robust, but can only optimize a smaller

number of meta-parameters because the combinations of parameters are sampled either

randomly or using Bayesian Optimization. If there are millions of meta-parameters,

gradient-based methods need to be used, but they introduce the challenges that we have

mentioned earlier.

Ultimately we would like to be able to backpropagate through the whole learning

process to update the meta-parameters, then perform full training with the newly

updated meta-parameters, repeating until the meta-parameters converge. This brings

various challenges, including extreme compute costs and also gradient instability due

to backpropagating through too long loops. There are signs that full-length training

in the inner loop can be useful. For example, learned optimizer VeLO (Metz et al.,

2022) has used these in combination with evolution strategies to avoid the gradient

instability. The learned VeLO optimizer offers compelling performance and does not

need hyperparameter tuning, but training it has required about four thousand TPU-

months of compute (Metz et al., 2022).

Online meta-learning that has short-horizon bias (also known as myopia) represents

a trade-off between using manageable amount of resources, ease of use and the per-

formance of the obtained solution. New approaches that try to alleviate the described

limitations are actively developed. For example, bootstrapped meta-learning (Flenner-

hag et al., 2022) has been able to alleviate myopia by bootstrapping a target from the

meta-learner and then optimizing the meta-learner to be close to the target. Libraries to

make meta-learning more scalable are also being developed, most recently Betty library

(Choe et al., 2023b) that enables parallelization of meta-learning. Overall, there remain

many open questions about how to make meta-learning easier to use successfully in

practice, and generally to use it to power the next revolution in deep learning.
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7.3 Open Questions and Future Work

We have outlined various limitations of meta-learning during our discussion. Some of

these relate to the fact that current more scalable approaches often suffer from short-

horizon bias, which in turn makes meta-learning less robust and challenging to apply in

many situations. On the other hand, approaches that do not make these simplifications

are only scalable to smaller-scale settings such as few-shot learning or otherwise are

too expensive. Overcoming these trade-offs hence remains one of the key questions that

remain to be answered as part of future work.

There are also open questions of more applied nature. Our Meta-Calibration has

shown how calibration can be framed as a meta-learning problem by introducing a

suitable meta-objective and then using it to optimize meta-parameters. With meta-

learning we have been able to obtain superior calibration, and it is likely a similar

workflow could be successfully applied for other applications. One example is the

problem of fairness (Mehrabi et al., 2019) where we try to ensure the neural network

does not discriminate against any of the sub-groups. Future work can hence develop

meta-learning approaches for more of the challenges related to deep learning.

Our Meta Omnium benchmark also raises a variety of open questions that can be

studied as part of future work. The most direct one regards the development of new

meta-learning approaches that target the problem of general-purpose few-shot learning.

Other potential questions are of more exploratory nature and include, for example,

studying the benefit of task-specific decoders, using external data, various ways to do

hyperparameter optimization in multi-task few-shot learning or studying properties of

multi-task optimization in meta-learning. While Meta Omnium focuses on different

task types within computer vision, it would be interesting to extend the benchmark to

also include tasks from various data modalities such as NLP (Bragg et al., 2021), speech

(Heggan et al., 2022) or channel coding (Li et al., 2021a). It is possible to have one

model to solve tasks from various modalities (Kaiser et al., 2017), so few-shot learning

across various data modalities should be also possible in principle. Such benchmark

would test how general-purpose existing few-shot learners are to a yet larger extent.

In-context learning (ICL), closely related to few-shot learning, is likely to remain

popular. We expect to see more research into how to maximise the performance of

ICL, as well as how to use it for achieving various goals, including how to improve AI

safety. As large models increasingly become multimodal (Liu et al., 2023; Gemini Team

Google, 2023), it is likely also ICL research will increasingly often target multimodal
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settings. In addition, better understanding of ICL is likely to remain one of the directions

of research in this area.

Longer-term it has been envisioned that meta-learning could play a key role in

AI-generating algorithms as an alternate paradigm towards artificial general intelligence

(Clune, 2019). More specifically it could be used for meta-learning strong architectures

as well as the learning algorithms themselves. Meta-learning could presumably also be

useful for continuously improving the abilities of the AI model.
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Appendix: EvoGrad

A.1 Code Illustration

A.1.1 EvoGrad Code

EvoGrad update is simple to implement if we use higher library (Grefenstette et al.,

2019) for the perturbed parameters of different model copies. We show only the part

that is relevant to the meta-update.
model_parameter = [i.detach() for i in get_func_params(model)]

theta_list = [[j + sigma * torch.sign(torch.randn_like(j))

for j in model_parameter] for i in range(n_model_candidates)]

pred_list = [model_patched(feature_transformer(inputs), params=theta)

for theta in theta_list]

loss_list = [criterion(pred , targets) for pred in pred_list]

weights = torch.softmax(-torch.stack(loss_list) / temperature , 0)

theta_updated = [sum(map(mul, theta , weights))

for theta in zip(*theta_list)]

preds_meta = model_patched(inputs_meta , params=theta_updated)

loss_meta = criterion(preds_meta , targets_meta)

meta_opt.zero_grad()

loss_meta.backward()

meta_opt.step()

Listing A.1: EvoGrad code example.

A.1.2 T1−T2 Code – for Comparison

For comparison with EvoGrad, we also show how online T1−T2-style meta-learning is

often implemented using so-called fast weights. This approach has been, for example,

used in (Chen et al., 2019; Tseng et al., 2020). The meta-update itself is concise, but it
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requires us to implement layers that support fast weights, which is a significantly longer

part.
preds = model(feature_transformer(inputs))

loss = criterion(preds , targets)

optimizer.zero_grad()

grads = torch.autograd.grad(loss , model.parameters(), create_graph=True)

for k, weight in enumerate(model.parameters()):

weight.fast = weight - meta_lr * grads[k]

preds_meta = model(inputs_meta)

loss_meta = criterion(preds_meta , targets_meta)

meta_opt.zero_grad()

loss_meta.backward()

meta_opt.step()

Listing A.2: T1−T2 code example.

We also show the definition of a linear layer that supports fast weights:
class Linear_fw(nn.Linear):

def __init__(self , in_features , out_features , bias=True):

super(Linear_fw , self).__init__(in_features , out_features ,

bias=bias)

self.weight.fast = None

self.bias.fast = None

def forward(self , x):

if self.weight.fast is not None and self.bias.fast is not None:

out = F.linear(x, self.weight.fast , self.bias.fast)

else:

out = super(Linear_fw , self).forward(x)

return out

Listing A.3: Code example for a linear layer that supports fast weights.

Normally we would use simple nn.Linear(in_features, out_features).

A.2 How to Select EvoGrad Hyperparameters

EvoGrad as an algorithm has a few hyperparameters common to most evolutionary

approaches: perturbation value σ, temperature τ and the number of model copies K. In

practice we use only 2 models as it is enough and improves the efficiency. The other

hyperparameter values can be selected relatively easily by looking at the training loss

of the unperturbed model and the training loss of the perturbed models. The losses

should be similar to each other, but not the same – we want to make sure the perturbed

weights can still be successfully used. We have found that in practice value σ = 0.001 is

reasonable. Once we have selected the value of σ, we can select the value of temperature
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τ which leads to reasonably different weights for the two (or more) model copies. In

practice we have found τ = 0.05 to be a value which leads to suitable weights. For

example, 0.48 and 0.52 for two model copies could be considered reasonable, while

0.5001 and 0.4999 would be too similar. Note that in the special case of a 1-dimensional

toy problem, suitable EvoGrad hyperparameters are different than what is useful for

practical problems.

A.3 Additional Details

We include an algorithmic description of the details as well as additional description of

the experimental settings for all five problems that we discuss in the chapter.

A.3.1 Illustration Using a 1-Dimensional Problem

We provide more detailed descriptions of how we perform both analyses. In the first

analysis, we calculate the EvoGrad hypergradient estimate for 100 values of ω between

0 and 2, starting with 0.1 and ending with 2.0. In each case we perform 100 repetitions to

obtain an estimate of the mean and standard deviation of the hypergradient, considering

the stochastic nature of EvoGrad. Given a value of ω, the process of EvoGrad estimate

can be summarized using Algorithm 6. As a reminder, we use training loss function

fT (x,ω) = (x− 1)2 + ω∥x∥2
2 that includes a meta-parameter ω and validation loss

function fV (x) = (x− 0.5)2 that does not include the meta-parameter. The value of

temperature is 0.5 and the number of model candidates varies between 2, 10 and 100.

Algorithm 6 EvoGrad hypergradient estimate for the 1D problem
1: Input: ω: target hyperparameter; K: number of model candidates; τ: temperature;

fT , fV : training and validation loss functions

2: Output: g: hypergradient estimate

3: Sample x∼N (0,1)

4: Sample K noise parameters εk ∼N (0,1) and use them to create xk = x+ εk

5: Calculate losses ℓk = fT (xk,ω) for k between 1 and K

6: Calculate weights w1,w2, . . . ,wK = softmax([−ℓ1,−ℓ2, . . . ,−ℓK]/τ)

7: Calculate x∗ = w1x1 +w2x2 + · · ·+wKxK

8: Calculate ℓV = fV (x∗)

9: Calculate hypergradient g = ∂ℓV
∂ω

by backpropagating through x∗ computation
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The second analysis evaluates the trajectories that values of x,ω take if we update

them with SGD with the hypergradient estimated by EvoGrad compared to the ground-

truth. We can summarize the process using Algorithm 7. When using the ground-truth

hypergradient, we simply replace lines 6 to 10 by directly updating the value of ω using

the closed-form formula for the hypergradient: g(ω) = (ω− 1)/(ω+ 1)3. We use 5

steps, learning rate of 0.1 and temperature 0.5.

Algorithm 7 Training with EvoGrad – 1D problem
1: Input: x0,ω0: initial values of x,ω; N: number of steps; α: learning rate; K:

number of model candidates; τ: temperature; fT , fV : training and validation loss

functions

2: Output: Optimized values of x,ω

3: Initialize x = x0 and ω = ω0

4: for i between 1 and N do
5: Update x← x−α

∂ fT (x,ω)
∂x

6: Sample K noise parameters εk ∼N (0,1) and use them to create xk = x+ εk

7: Calculate losses ℓk = fT (xk,ω) for k between 1 and K

8: Calculate weights w1,w2, . . . ,wK = softmax([−ℓ1,−ℓ2, . . . ,−ℓK]/τ)

9: Calculate x∗ = w1x1 +w2x2 + · · ·+wKxK

10: Update ω← ω−α
∂ fV (x∗)

∂ω

11: end for

A.3.2 Rotation Transformation

As part of the rotation transformation problem, we try to prepare a model for the

classification of rotated images. We use MNIST images (LeCun et al., 1998) and train

the base model with unrotated training images, while testing is done with images rotated

by 30◦. We split the original training set to create a meta-validation set of size 10,000

with images rotated by 30◦.

To prepare the model for the target problem, we meta-learn a rotation transformation

alongside training the base model – which we apply to the unrotated images. Our

base model is LeNet (LeCun et al., 1989) that has two CNN layers followed by three

fully-connected layers. We use ReLU non-linearity and max-pooling. The base model

is trained with Adam optimizer (Kingma and Ba, 2015) with 0.001 learning rate,

while the meta-parameter is optimized with Adam optimizer with learning rate of
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0.01. We use a batch size of 128 and cross-entropy loss ℓ. EvoGrad parameters are

τ = 0.05,σ = 0.001,K = 2. We sample the noise parameters as εk ∼ σsign(N (0, I)),

and we use this formulation also in the further practical meta-learning problems – it is

a better-controlled version of simple N (0,σI). We train the models for 5 epochs and

repeat the experiments 5 times. The algorithm is summarized in Algorithm 8.

Rotations are performed using a model with one learnable parameter ω (angle). The

input that the model receives is rotated using matrix:(
cos(ω) −sin(ω)

sin(ω) cos(ω)

)
.

Algorithm 8 Training with EvoGrad hypergradient – rotation transformation

1: Input: α: learning rate; β: meta-learning rate; σ: noise parameter; K: number of

model candidates; τ: temperature

2: Output: θ: trained model; ω: rotation parameter

3: Initialize θ∼ p(θ) and ω = 0

4: while training do
5: Sample minibatch of training xt ,yt (standard) and validation xv,yv (rotated)

examples

6: Update θ← θ−α∇θℓ( fθ( fω(xt)),yt)

7: Sample K noise parameters εk ∼ σsign(N (0, I)) and use them to create θk =

θ+ εk

8: Calculate losses ℓk = ℓ( fθk( fω(xt)),yt) for k between 1 and K

9: Calculate weights w1,w2, . . . ,wK = softmax([−ℓ1,−ℓ2, . . . ,−ℓK]/τ)

10: Calculate θ∗ = w1θ1 +w2θ2 + · · ·+wKθK

11: Update ω← ω−β∇ωℓ( fθ∗(xv),yv)

12: end while

We compare our meta-learning approach to simple standard training that does not

use the rotation transformer. In such case we keep the same settings as before and

update the model simply as θ← θ−α∇θℓ( fθ(xt),yt). The results prove EvoGrad is

capable of meta-learning suitable values.
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A.3.3 Cross-Domain Few-Shot Classification via Learned Feature-

Wise Transformation

We extend the Learning-to-Learn Feature-Wise Transformation method from (Tseng

et al., 2020) to show the practical impact that EvoGrad can make. The goal of the LFT

method is to make metric-based few-shot learners robust to domain shift. A detailed

description of the LFT method is provided in (Tseng et al., 2020), and here we describe

the main changes that are needed to use EvoGrad for LFT. The key difference is that we

do not backpropagate via standard model update that leads to higher memory and time

consumption (we measure maximum allocated memory and time per epoch).

We summarize how EvoGrad is applied to LFT in Algorithm 9. A metric based

model (we choose RelationNet (Sung et al., 2018)) includes feature encoder Eθe and

metric function Mθm . Feature transformation layers parameterized by θ f = {θγ,θβ} are

integrated into the feature encoder to form Eθe,θ f . Similarly as (Tseng et al., 2020),

we sample pseudo-seen T ps and pseudo-unseen T pu domains from the seen domains{
T seen

1 ,T seen
2 , · · · ,T seen

n
}

. In each step, we sample pseudo-seen and pseudo-unseen

few-shot learning tasks that both include support and query examples. The pseudo-seen

task is described as T ps =
{(

X ps
s ,Y ps

s
)
,
(
X ps

q ,Y ps
q
)}
∈ T ps and the pseudo-unseen task

is T pu =
{(

X pu
s ,Y pu

s
)
,
(
X pu

q ,Y pu
q
)}
∈ T pu, for task examples X with labels Y .

We have used the exact same set-up as (Tseng et al., 2020) with their official

implementation (for RelationNet), so we only describe the additional settings that are

unique to us. In particular, EvoGrad-specific parameters are τ = 0.05,K = 2,σ = 0.001

(we have used σ equal to the learning rate). We have used ResNet-10 (He et al., 2016)

backbone for direct comparison with (Tseng et al., 2020). The datasets that we use are

processed in the same way as done by (Tseng et al., 2020), and they are MiniImagenet

(Ravi and Larochelle, 2017), CUB (Welinder et al., 2010), Cars (Krause et al., 2013),

Places (Zhou et al., 2018) and Plantae (Horn et al., 2018).

In order to use ResNet-34, we have trained a new ResNet-34 baseline model on

MiniImagenet (Ravi and Larochelle, 2017) per (Tseng et al., 2020) instructions. We use

the same hyperparameters as were used for ResNet-10, which also means that when

using fixed feature transformation layers, we use θγ = 0.3,θβ = 0.5. Note that ResNet-

34 ran out of memory for the original second-order LFT approach on 5-way 5-shot

task with 16 query examples when using standard GPU with 12 GB GPU memory. If

we wanted to use this model also for the second-order approach, we would need to

decrease the number of examples in the task appropriately. However, with EvoGrad
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we do not need to make this compromise and overall it means that EvoGrad scales also

to problems where the original second-order approach does not scale because of GPU

memory limitations.

Algorithm 9 Learning-to-learn feature-wise transformation – with EvoGrad

1: Input:
{

T seen
1 ,T seen

2 , · · · ,T seen
n

}
: seen domains; α: learning rate; σ: noise

parameter; K: number of model candidates; τ: temperature

2: Output: θe: feature extractor; θm: metric learner; θ f : feature transformation layers

3: Initialize θe,θm,θ f ∼ p(θe), p(θm), p(θ f )

4: while training do
5: Randomly sample non-overlapping pseudo-seen T ps and pseudo-unseen T pu

domains from the seen domains

6: Sample a pseudo-seen task T ps ∈ T ps and a pseudo-unseen task T pu ∈ T pu

7: // Standard update of the metric-based model with pseudo-seen task:
8: Update θe,θm← θe,θm−α∇(θe,θm)ℓ

(
Mθm

(
Y ps

s ,Eθe,θ f

(
X ps

s
)
,Eθe,θ f

(
X ps

q
))

,Y ps
q

)
9: // EvoGrad computations:

10: Sample K noise parameters
{

ε
(k)
e ,ε

(k)
m

}K

k=1
∼ σsign(N (0, I))

11: Create θ
(k)
e = θe + ε

(k)
e and θ

(k)
m = θm + ε

(k)
m for k between 1 and K

12: Calculate losses ℓk = ℓ
(

M
θ
(k)
m

(
Y ps

s ,E
θ
(k)
e ,θ f

(
X ps

s
)
,E

θ
(k)
e ,θ f

(
X ps

q
))

,Y ps
q

)
13: Calculate weights w1,w2, . . . ,wK = softmax([−ℓ1,−ℓ2, . . . ,−ℓK]/τ)

14: Calculate θ∗e = w1θ
(1)
e +w2θ

(2)
e + · · ·+wKθ

(K)
e

15: Calculate θ∗m = w1θ
(1)
m +w2θ

(2)
m + · · ·+wKθ

(K)
m

16: // Update feature-wise transformation layers with pseudo-unseen task:
17: Update θ f ← θ f −α∇θ f ℓ

(
Mθ∗m

(
Y pu

s ,Eθ∗e

(
X pu

s
)
,Eθ∗e

(
X pu

q
))

,Y pu
q
)

18: end while

A.3.4 Label Noise with Meta-Weight-Net

We use the experimental set-up from (Shu et al., 2019) for the label noise experiments,

together with their official implementation. The label noise experiments use ResNet-32

model and 60 epochs, each of which has 500 iterations. CIFAR-10 and CIFAR-100

(Krizhevsky, 2009) datasets are used. Meta-Weight-Net is represented by a neural

network with two linear layers with hidden size of 300 units, ReLU nonlinearity in

between and sigmoid output unit. Meta-Weight-Net weights instance-wise losses for

each example in the minibatch, which are then combined together by taking their sum.
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EvoGrad specific parameters are τ = 0.05,K = 2,σ = 0.001. The level of label noise

depends on the specific scenario considered – 40%, 20% or 0%.

We provide an overview of the EvoGrad approach applied to the label noise with

Meta-Weight-Net problem in Algorithm 10. Even though we do the standard update

using noisy examples after the meta-update, the order could be swapped and we simply

follow the order chosen by (Shu et al., 2019). Detailed explanations are provided in

(Shu et al., 2019), we only explain how we modify the method to use EvoGrad. Note

that we do not rerun the baseline experiments and we directly take the reported values

from the Meta-Weight-Net paper (Shu et al., 2019). However, we do our own rerun of

standard second-order Meta-Weight-Net to get memory and runtime statistics.

Algorithm 10 Meta-Weight-Net for label noise – with EvoGrad
1: Input: α: learning rate; σ: noise parameter; K: number of model candidates; τ:

temperature

2: Output: θ: trained model; ω: Meta-Weight-Net parameters

3: Initialize θ,ω∼ p(θ), p(ω)

4: while training do
5: Sample minibatch of training xt ,yt (noisy) and validation xv,yv (clean) examples

6: // EvoGrad update:
7: Sample K noise parameters εk ∼ σsign(N (0, I)) and use them to create θk =

θ+ εk

8: Calculate losses ℓk = fω

(
ℓ( fθk(xt),yt)

)
for k between 1 and K

9: Calculate weights w1,w2, . . . ,wK = softmax([−ℓ1,−ℓ2, . . . ,−ℓK]/τ)

10: Calculate θ∗ = w1θ1 +w2θ2 + · · ·+wKθK

11: Update ω← ω−α∇ωℓ( fθ∗(xv),yv)

12: // Standard update using noisy examples and MWN:
13: Update θ← θ−α∇θ fω (ℓ( fθ(xt),yt))

14: end while

In addition, we provide further details about Meta-Weight-Net scalability analyses.

We have chosen MWN to conduct these analyses because it represents a real problem

where meta-learning is helpful, yet the memory consumption and time requirements are

small enough to allow us to easily evaluate scaling up of the numbers of parameters.

All Meta-Weight-Net scalability experiments are repeated 5 times, but we do not run

them fully – we only do 10 epochs to get estimates of the time per epoch.

We have provided the main results that evaluate the impact of using a model with
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significantly more parameters in the main chapter. Here we provide additional figures.

Figure A.1 shows the impact of variable number of meta-parameters (number of hidden

units in MWN). We can see the number of meta-parameters does not significantly

impact the memory usage or runtime. This is likely because we use reverse-mode

backpropagation that becomes more expensive with more model parameters and not

hyperparameters (Micaelli and Storkey, 2019). Further, the number of meta-parameters

still remains small compared to the size of the model. Figure A.2 shows the number

of model copies does not lead to increased memory consumption, perhaps because we

only keep the model weights in memory and not also many intermediate variables like

activations that are needed for backpropagation – backpropagation is significantly more

expensive in terms of memory than forward propagation (Rajeswaran et al., 2019). The

runtime increases slightly with additional model copies, which comes from the need to

calculate additional forward propagations.
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Figure A.1: Memory and time scaling of MWN EvoGrad vs original second-order

Meta-Weight-Net – when changing the number of learnable hyperparameters (meta-

parameters). The number of meta-parameters does not noticeably influence the memory

usage and time per epoch in this case.

A.3.5 Low-Resource Cross-Lingual Learning with MetaXL

MetaXL (Xia et al., 2021) is an approach that meta-learns meta representation trans-

formation to improve transfer in low-resource cross-lingual learning. We show how

EvoGrad is applied to MetaXL in Algorithm 11

In order to do experiments, we have taken the official code provided by (Xia et al.,

2021) and tried to replicate their experiments as closely as possible. We used the named

entity recognition (NER) task with English source language. The only change we made

is a smaller batch size: 12 instead of 16 to fit into the memory of the largest GPUs that

we have currently available. All details are described in (Xia et al., 2021). For EvoGrad
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Figure A.2: Memory and time scaling of MWN EvoGrad – when using different numbers

of model copies. A larger number of model copies does not increase the memory usage

in this case, but it leads to a larger time per epoch.

we have selected the same hyperparameters as for the other tasks (two model candidates,

σ = 0.001 and τ = 0.05). In order to make the implementation of EvoGrad on MetaXL

simple, we have only applied noise perturbation on the top layer of the model. It is

likely that in practice it is enough to only apply the noise to the top layer, which can

make using EvoGrad very simple in most cases.

A.3.6 Datasets Availability

All datasets that we use are freely available and their details are described in (Tseng

et al., 2020), (Shu et al., 2019) and (Xia et al., 2021) – including how to download them.

A.3.7 Computational Resources

Illustration using a 1-dimensional problem and rotation transformation can be easily run

on a laptop GPU. For cross-domain few-shot learning with LFT and label noise with

MWN, we have used an internal cluster with NVIDIA GPUs - Titan X or P100 (all with

12GB GPU memory). For MetaXL we have used NVIDIA 3090 Ti GPUs with 24GB

memory. When reporting the time and memory statistics we made sure to use the same

model of GPU so that the comparisons are accurate. The experiments were allocated 14

GB RAM memory and 6 CPUs to allow for faster data loading (fewer resources would

also be suitable).
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Algorithm 11 MetaXL for cross-lingual learning – with EvoGrad

1: Input: α,β: learning rates; σ: noise parameter; K: number of model candidates; τ:

temperature; Dt ,Ds: input data from the target and source language

2: Output: θ: trained model; ω: representation transformation network

3: Initialize base model parameters θ with pretrained XLM-R weights, initialize

parameters of the representation transformation network ω randomly

4: while training do
5: Sample a source batch (xs,ys) from Ds and a target batch (xt ,yt) from Dt

6: // EvoGrad update:
7: Sample K noise parameters εk ∼ σsign(N (0, I)) and use them to create θk =

θ+ εk

8: Calculate losses ℓk = ℓ( fω◦θk(xs),ys) for k between 1 and K

9: Calculate weights w1,w2, . . . ,wK = softmax([−ℓ1,−ℓ2, . . . ,−ℓK]/τ)

10: Calculate θ∗ = w1θ1 +w2θ2 + · · ·+wKθK

11: Update ω← ω−β∇ωℓ( fθ∗(xt),yt)

12: // Standard update using representation transformation network:
13: Update θ← θ−α∇θℓ( fω◦θ(xs),ys)

14: end while

A.4 Evaluation of Hypernetworks

We have evaluated hypernetworks (Lorraine and Duvenaud, 2018) for cross-domain few-

shot classification via learned feature-wise transformation, to find if the approach can

be useful for recent meta-learning applications. To make the approach computationally

viable, we have used hypernetworks with a bottleneck. For H hyperparameters, P

model parameters and bottleneck size of B, our hypernetwork φ consists of two layers,

one with a weight matrix of H×B, followed by B×P weight matrix, with sigmoid

non-linearity in between. Note that B needs to be relatively small and directly using

one layer with a weight matrix of H×P would require far more memory than normally

available – for the considered problem. Following (Lorraine and Duvenaud, 2018), we

have used bottleneck size B = 10. We have used the exact same experimental set-up as

in our other experiments.

Our results in Table A.1 show hypernetworks fail to discover a good solution within

the standard number of iterations used throughout, and their performance is poor. The

results highlight that generating model parameters based on the hyperparameters may
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not be sufficient in more challenging and more realistic meta-learning problems. It also

explains why hypernetworks are not commonly used in meta-learning applications.

Table A.1: RelationNet test accuracies (%) and 95% confidence intervals across test

tasks on various unseen datasets. 5-way 1-shot learning at the top and 5-way 5-shot

learning at the bottom. Hypernetworks lead to significantly worse accuracies than T1−T2

and EvoGrad, showing they fail to generate well-performing model parameters.

Scenario CUB Cars Places Plantae

LFT with hypernetworks 38.94 ± 0.57 30.10 ± 0.48 38.07 ± 0.58 33.83 ± 0.58

LFT with T1−T2 46.03 ± 0.60 31.50 ± 0.49 49.29 ± 0.65 36.34 ± 0.59

LFT with EvoGrad 47.39 ± 0.61 32.51 ± 0.56 50.70 ± 0.66 36.00 ± 0.56

LFT with hypernetworks 56.91 ± 0.57 40.64 ± 0.56 56.08 ± 0.58 44.73 ± 0.57

LFT with T1−T2 65.94 ± 0.56 43.88 ± 0.56 65.57 ± 0.57 51.43 ± 0.55

LFT with EvoGrad 64.63 ± 0.56 42.64 ± 0.58 66.54 ± 0.57 52.92 ± 0.57

A.5 Comparison to More Meta-Learning Approaches

In this section we provide an extended comparison of hypergradient approximations by

various gradient-based meta-learners, similar to the analysis done in (Lorraine et al.,

2020). The approximations themselves are provided in Table A.2, while the time and

memory requirements are given in Table A.3.
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Table A.2: Comparison of hypergradient approximations of different gradient-based

meta-learning methods. Number of inner-loop steps is denoted by i. Note that also

one-step approximation methods can be used once per i steps. θ∗ describes the optimal

model parameters given ω, while θ̂∗ represents their approximation.

Method Hypergradient approximation

Unrolled diff. (Maclaurin et al., 2015) ∂ℓV
∂ω
− ∂ℓV

∂θ
× ∑ j≤i

[
∏k< j I− ∂2ℓT

∂θ∂θT

∣∣∣
θi−k

]
∂2ℓT

∂θ∂ωT

∣∣∣∣
θi− j

K-step truncated

unrolled diff.

(Shaban et al.,

2019)

∂ℓV
∂ω
− ∂ℓV

∂θ
× ∑K≤ j≤i

[
∏k< j I− ∂2ℓT

∂θ∂θT

∣∣∣
θi−k

]
∂2ℓT

∂θ∂ωT

∣∣∣∣
θi− j

T1−T2 (Luketina et al., 2016) ∂ℓV
∂ω
− ∂ℓV

∂θ
× [I]−1 ∂2ℓT

∂θ∂ωT

∣∣∣
θ̂∗(ω)

Hypernetworks (Lorraine and Duvenaud, 2018) ∂ℓV
∂ω

+ ∂ℓV
∂θ
× ∂θ∗

φ

∂ω
where θ∗

φ
(ω) = argminφ ℓT

(
ω,θφ(ω)

)
Exact IFT (Lorraine et al., 2020) ∂ℓV

∂ω
− ∂ℓV

∂θ
×
[

∂2ℓT
∂θ∂θT

]−1
∂2ℓT

∂θ∂ωT

∣∣∣∣
θ∗(ω)

Neumann IFT (Lorraine et al., 2020) ∂ℓV
∂ω
− ∂ℓV

∂θ
×
(

∑ j<i

[
I− ∂2ℓT

∂θ∂θT

] j
)

∂2ℓT
∂θ∂ωT

∣∣∣∣
θ̂∗(ω)

EvoGrad (ours) ∂ℓV
∂ω

+ ∂ℓV
∂θ
× E ∂w

∂ℓ
∂ℓ
∂ω

= ∂ℓV
∂ω

+ ∂ℓV
∂θ
×E ∂softmax(−ℓ)

∂ω

∣∣∣
θ̂∗(ω)

Table A.3: Comparison of asymptotic time and memory requirements of EvoGrad and

other gradient-based meta-learners. P is the number of model parameters, H is the

number of hyperparameters, I is the number of inner-loop steps, N is the number of

model copies in EvoGrad. Note this is a first-principles analysis, so the time requirements

are different when using e.g. reverse-mode backpropagation that uses parallelization.

Method Time requirements Memory requirements

Unrolled diff. (Maclaurin et al., 2015) O(IP2 +PH) O(PI +H)

K-step truncated unrolled diff. (Shaban et al., 2019) O(KP2 +PH) O(PK +H)

T1−T2 (Luketina et al., 2016) O(PH) O(P+H)

Linear hypernetworks (Lorraine and Duvenaud, 2018) O(PH) O(PH)

Neumann IFT (Lorraine et al., 2020) O(P2 +PH) O(P+H)

EvoGrad (ours) O(NP+H) O(P+H)
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Appendix: PASHA

B.1 Additional Baselines

We consider additional baselines that evaluate how good two, three and five-epoch

baselines are compared to PASHA. From Table B.1 and B.2 we see that while these

usually get closer to the performance of ASHA and PASHA than the one-epoch baseline,

they are still relatively far compared to PASHA. Moreover, it is crucial to observe that

such baselines cannot dynamically allocate resources and decide when to stop, and as

a result PASHA can outperform them both in terms of speedup and the quality of the

found configuration.

127
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Table B.1: NASBench201 results. PASHA leads to large improvements in runtime, while

achieving similar accuracy as ASHA.

Dataset Approach Accuracy (%) Runtime Speedup factor Max resources

CIFAR-10

ASHA 93.85 ± 0.25 3.0h ± 0.6h 1.0x 200.0 ± 0.0

PASHA 93.57 ± 0.75 1.3h ± 0.6h 2.3x 36.1 ± 50.0

One-epoch baseline 93.30 ± 0.61 0.3h ± 0.0h 8.5x 1.0 ± 0.0

Two epoch baseline 92.75 ± 0.91 0.7h ± 0.0h 4.2x 2.0 ± 0.0

Three epoch baseline 93.47 ± 0.71 1.0h ± 0.0h 2.8x 3.0 ± 0.0

Five epoch baseline 93.38 ± 0.90 1.7h ± 0.0h 1.7x 5.0 ± 0.0

Random baseline 72.88 ± 19.20 0.0h ± 0.0h N/A 0.0 ± 0.0

CIFAR-100

ASHA 71.69 ± 1.05 3.2h ± 0.9h 1.0x 200.0 ± 0.0

PASHA 71.84 ± 1.41 0.9h ± 0.4h 3.4x 20.5 ± 48.3

One-epoch baseline 65.57 ± 5.53 0.3h ± 0.0h 9.2x 1.0 ± 0.0

Two-epoch baseline 68.28 ± 4.25 0.7h ± 0.0h 4.6x 2.0 ± 0.0

Three-epoch baseline 70.47 ± 1.60 1.0h ± 0.0h 3.1x 3.0 ± 0.0

Five-epoch baseline 70.95 ± 0.95 1.7h ± 0.0h 1.8x 5.0 ± 0.0

Random baseline 42.83 ± 18.20 0.0h ± 0.0h N/A 0.0 ± 0.0

ImageNet16-120

ASHA 45.63 ± 0.81 8.8h ± 2.2h 1.0x 200.0 ± 0.0

PASHA 45.13 ± 1.51 2.9h ± 1.7h 3.1x 21.3 ± 48.1

One-epoch baseline 41.42 ± 4.98 1.0h ± 0.0h 8.8x 1.0 ± 0.0

Two-epoch baseline 42.99 ± 1.89 2.0h ± 0.0h 4.4x 2.0 ± 0.0

Three-epoch baseline 44.65 ± 0.95 3.0h ± 0.0h 2.9x 3.0 ± 0.0

Five-epoch baseline 44.75 ± 1.03 5.0h ± 0.1h 1.8x 5.0 ± 0.0

Random baseline 20.75 ± 9.97 0.0h ± 0.0h N/A 0.0 ± 0.0

Table B.2: Results of the HPO experiments on WMT and ImageNet tasks from the PD1

benchmark. Mean and std of the best validation accuracy (or its equivalent as given in

the PD1 benchmark).

Dataset Approach Accuracy (%) Runtime Speedup factor Max resources

WMT

ASHA 62.72 ± 1.41 43.7h ± 37.2h 1.0x 1357.4 ± 80.4

PASHA 62.04 ± 2.05 2.8h ± 0.6h 15.5x 37.8 ± 21.6

One-epoch baseline 62.36 ± 1.40 0.6h ± 0.0h 67.3x 1.0 ± 0.0

Two-epoch baseline 60.16 ± 3.58 1.1h ± 0.0h 39.1x 2.0 ± 0.0

Three-epoch baseline 61.12 ± 3.47 1.6h ± 0.0h 27.6x 3.0 ± 0.0

Five-epoch baseline 57.89 ± 5.33 2.5h ± 0.0h 17.3x 5.0 ± 0.0

Random baseline 33.93 ± 21.96 0.0h ± 0.0h N/A 0.0 ± 0.0

ImageNet

ASHA 75.10 ± 2.03 7.3h ± 1.2h 1.0x 251.0 ± 0.0

PASHA 73.37 ± 2.71 3.8h ± 1.0h 1.9x 45.0 ± 30.1

One-epoch baseline 63.40 ± 9.91 1.1h ± 0.0h 6.7x 1.0 ± 0.0

Two-epoch baseline 64.61 ± 10.81 1.7h ± 0.0h 4.2x 2.0 ± 0.0

Three-epoch baseline 68.74 ± 3.79 2.3h ± 0.1h 3.2x 3.0 ± 0.0

Five-epoch baseline 65.91 ± 3.99 3.7h ± 0.1h 2.0x 5.0 ± 0.0

Random baseline 36.94 ± 31.05 0.0h ± 0.0h N/A 0.0 ± 0.0
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B.2 Reduction Factor

Table B.3 shows the full set of results for our experiments with different reduction

factors. The behaviour is the same across all cases.

Table B.3: NASBench201 results with various reduction factors η.

Dataset Reduction factor Approach Accuracy (%) Runtime Speedup factor Max resources

CIFAR-10

η = 2
ASHA 93.88 ± 0.27 3.6h ± 1.1h 1.0x 200.0 ± 0.0

PASHA 93.53 ± 0.76 1.0h ± 0.3h 3.5x 9.1 ± 8.1

η = 4
ASHA 93.75 ± 0.28 2.4h ± 0.6h 1.0x 200.0 ± 0.0

PASHA 93.65 ± 0.65 1.1h ± 0.5h 2.3x 32.3 ± 50.2

CIFAR-100

η = 2
ASHA 71.67 ± 0.84 3.8h ± 1.0h 1.0x 200.0 ± 0.0

PASHA 71.65 ± 1.42 0.9h ± 0.1h 4.2x 5.9 ± 2.0

η = 4
ASHA 71.43 ± 1.13 2.7h ± 0.9h 1.0x 200.0 ± 0.0

PASHA 72.09 ± 1.22 1.0h ± 0.4h 2.8x 25.1 ± 49.0

ImageNet16-120

η = 2
ASHA 46.09 ± 0.68 11.9h ± 4.0h 1.0x 200.0 ± 0.0

PASHA 45.35 ± 1.52 2.8h ± 0.6h 4.2x 9.3 ± 7.1

η = 4
ASHA 45.43 ± 0.98 7.9h ± 3.0h 1.0x 200.0 ± 0.0

PASHA 45.52 ± 1.30 2.9h ± 1.1h 2.8x 18.4 ± 18.7

B.3 Experiments with Alternative Ranking Functions

B.3.1 Description

PASHA employs a ranking function whose choice is completely arbitrary. In our main

set of experiments we used soft ranking that automatically estimates the value of ε

by measuring noise in rankings. In this set of experiments we would like to evaluate

different criteria to define the ranking of the candidates. We describe the functions

considered next.

Direct Ranking As a baseline, we study if we can use the simple ranking of configu-

rations by predictive performance (e.g., sorting from the ones with the highest accuracy

to the ones with the lowest). If any of the configurations change their order, we consider

the ranking unstable and increase the resources.

Soft Ranking Variations We consider several variations of soft ranking. The first

variation is to fix the value of the ε parameter. We have considered values 0.01,

0.02, 0.025, 0.03, 0.05. The second set of variations aim to estimate the value of ε
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automatically, using various heuristics. The heuristics we have evaluated include:

• Standard deviation: calculate the standard deviation of the considered perfor-

mance measure (e.g. accuracy) of the configurations in the previous rung and set

a multiple of it as the value of ε – we tried multiples of 1, 2 and 3.

• Mean distance: value of ε is set as the mean distance between the score of the

configurations in the previous rung.

• Median distance: similar to the mean distance, but using the median distance.

There are various benefits for estimating the value of ε by measuring noise in

rankings, as we have presented earlier:

• There is no need to set the value of ε manually.

• Estimation of ε has an intuitive motivation that makes sense.

• The value of ε can dynamically adapt to the different stages of hyperparameter

optimization.

• The approach works well in practice.

Rank Biased Overlap (RBO) (Webber et al., 2010) A score that can be broadly

interpreted as a weighted correlation between rankings. We can specify how much we

want to prioritize the top of the ranking using parameter p that is between 0.0 and 1.0,

with a smaller value giving more priority to the top of the ranking. The best value is 1.0,

while it gives value of 0.0 for rankings that are completely the opposite. We compute

the RBO value and then compare it to the selected threshold t, increasing the resources

if the value is less than the threshold.

Reciprocal Rank Regret (RRR) A key insight is that configurations can be very

similar to each other and differences in their rankings will not affect the quality of the

found solution significantly. To account for this we look at the objective values of the

configurations (e.g. accuracy) and compute the relative regret that we would pay at the

current rung if we would have assumed the ranking at the previous rung correct.

We define reciprocal rank regret (RRR) as:

RRR =
n−1

∑
i=0

( fi− f ′i )
fi

wi,

where f represents the ordered scores in the top rung, f ′ represents the reordered

scores from the top rung according to the second rung, n is the number of configurations
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in the top rung and p is the parameter that says how much attention to give to the top

of the ranking. The weights wi sum to 1 and can be selected in different ways to e.g.

give more priority to the top of the ranking. For example, we could use the following

weights:

wi =
pi

∑
n−1
i=0 pi

The metric has an intuitive interpretation: it is the average relative regret with

priority on top of the ranking. The best value of RRR is 0.0, while the worst possible

value is 1.0.

We also consider a version of RRR which considers the absolute values of the

differences in the objectives - Absolute RRR (ARRR).

We have evaluated these additional ranking functions using NASBench201 bench-

mark.

B.3.2 Results

We report the results in Table B.4, B.5 and B.6. We see there are also several other

variations that achieve strong results across a variety of datasets within NASBench201,

most notably soft ranking 2σ and variations based on RRR. In these cases we obtain

similar performance as ASHA, but at a significantly shorter time. We additionally

also give a similar analysis in Table B.7 (analogous to Table 4.4), where we analyse a

selection of the most interesting ranking functions for the PD1 benchmark.
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Table B.4: NASBench201 – CIFAR-10 results for a variety of ranking functions.

Approach Accuracy (%) Runtime Speedup factor Max resources

ASHA 93.85 ± 0.25 3.0h ± 0.6h 1.0x 200.0 ± 0.0

PASHA 93.57 ± 0.75 1.3h ± 0.6h 2.3x 36.1 ± 50.0

PASHA direct ranking 93.79 ± 0.26 2.7h ± 0.6h 1.1x 198.4 ± 6.0

PASHA soft ranking ε = 0.01 93.79 ± 0.26 2.6h ± 0.5h 1.1x 194.3 ± 21.2

PASHA soft ranking ε = 0.02 93.78 ± 0.31 2.4h ± 0.5h 1.2x 152.4 ± 58.3

PASHA soft ranking ε = 0.025 93.78 ± 0.31 2.3h ± 0.5h 1.3x 144.5 ± 59.4

PASHA soft ranking ε = 0.03 93.78 ± 0.32 2.2h ± 0.6h 1.3x 128.6 ± 58.3

PASHA soft ranking ε = 0.05 93.79 ± 0.49 1.8h ± 0.7h 1.6x 76.0 ± 66.0

PASHA soft ranking 1σ 93.75 ± 0.32 2.4h ± 0.5h 1.2x 186.4 ± 35.2

PASHA soft ranking 2σ 93.88 ± 0.28 1.9h ± 0.5h 1.5x 132.7 ± 68.7

PASHA soft ranking 3σ 93.56 ± 0.69 0.9h ± 0.3h 3.1x 16.2 ± 19.9

PASHA soft ranking mean distance 93.73 ± 0.52 2.3h ± 0.4h 1.3x 184.1 ± 40.5

PASHA soft ranking median distance 93.82 ± 0.26 2.3h ± 0.5h 1.3x 169.2 ± 51.2

PASHA RBO p=1.0, t=0.5 93.49 ± 0.78 0.7h ± 0.1h 4.2x 4.6 ± 6.0

PASHA RBO p=0.5, t=0.5 93.77 ± 0.35 2.2h ± 0.6h 1.3x 144.0 ± 71.2

PASHA RRR p=1.0, t=0.05 93.49 ± 0.78 0.7h ± 0.0h 4.4x 3.0 ± 0.0

PASHA RRR p=0.5, t=0.05 93.76 ± 0.31 2.1h ± 0.6h 1.4x 140.9 ± 69.7

PASHA ARRR p=1.0, t=0.05 93.71 ± 0.35 2.4h ± 0.4h 1.2x 179.0 ± 42.9

PASHA ARRR p=0.5, t=0.05 93.81 ± 0.30 2.5h ± 0.4h 1.2x 181.0 ± 40.9

One-epoch baseline 93.30 ± 0.61 0.3h ± 0.0h 8.5x 1.0 ± 0.0

Random baseline 72.88 ± 19.20 0.0h ± 0.0h N/A 0.0 ± 0.0
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Table B.5: NASBench201 – CIFAR-100 results for a variety of ranking functions.

Approach Accuracy (%) Runtime (s) Speedup factor Max resources

ASHA 71.69 ± 1.05 3.2h ± 0.9h 1.0x 200.0 ± 0.0

PASHA 71.84 ± 1.41 0.9h ± 0.4h 3.4x 20.5 ± 48.3

PASHA direct ranking 71.69 ± 1.05 2.8h ± 0.7h 1.1x 200.0 ± 0.0

PASHA soft ranking ε = 0.01 71.55 ± 1.04 2.5h ± 0.7h 1.3x 198.3 ± 6.5

PASHA soft ranking ε = 0.02 70.94 ± 0.85 2.0h ± 0.5h 1.6x 160.5 ± 62.9

PASHA soft ranking ε = 0.025 71.41 ± 1.15 1.5h ± 0.7h 2.1x 88.3 ± 74.4

PASHA soft ranking ε = 0.03 71.00 ± 1.38 1.0h ± 0.5h 3.2x 39.4 ± 63.4

PASHA soft ranking ε = 0.05 70.71 ± 1.66 0.7h ± 0.0h 4.9x 3.0 ± 0.0

PASHA soft ranking 1σ 71.56 ± 1.03 2.5h ± 0.6h 1.3x 184.1 ± 40.5

PASHA soft ranking 2σ 71.14 ± 0.97 1.9h ± 0.7h 1.7x 136.4 ± 75.8

PASHA soft ranking 3σ 71.63 ± 1.60 1.0h ± 0.3h 3.3x 20.2 ± 25.3

PASHA soft ranking mean distance 71.51 ± 0.99 2.4h ± 0.5h 1.4x 189.8 ± 30.3

PASHA soft ranking median distance 71.52 ± 0.98 2.4h ± 0.6h 1.3x 189.5 ± 30.6

PASHA RBO p=1.0, t=0.5 70.69 ± 1.67 0.7h ± 0.1h 4.6x 3.8 ± 2.0

PASHA RBO p=0.5, t=0.5 71.51 ± 0.93 2.4h ± 0.7h 1.3x 180.5 ± 50.6

PASHA RRR p=1.0, t=0.05 70.71 ± 1.66 0.7h ± 0.0h 4.9x 3.0 ± 0.0

PASHA RRR p=0.5, t=0.05 71.42 ± 1.51 1.2h ± 0.5h 2.6x 39.3 ± 51.4

PASHA ARRR p=1.0, t=0.05 70.80 ± 1.70 0.8h ± 0.4h 3.8x 22.9 ± 51.3

PASHA ARRR p=0.5, t=0.05 71.41 ± 1.05 1.8h ± 0.6h 1.7x 110.0 ± 68.7

One-epoch baseline 65.57 ± 5.53 0.3h ± 0.0h 9.2x 1.0 ± 0.0

Random baseline 42.83 ± 18.20 0.0h ± 0.0h N/A 0.0 ± 0.0
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Table B.6: NASBench201 – ImageNet16-120 results for a variety of ranking functions.

Approach Accuracy (%) Runtime (s) Speedup factor Max resources

ASHA 45.63 ± 0.81 8.8h ± 2.2h 1.0x 200.0 ± 0.0

PASHA 45.13 ± 1.51 2.9h ± 1.7h 3.1x 21.3 ± 48.1

PASHA direct ranking 45.63 ± 0.81 8.3h ± 2.5h 1.1x 200.0 ± 0.0

PASHA soft ranking ε = 0.01 45.52 ± 0.89 7.0h ± 1.5h 1.3x 185.7 ± 36.1

PASHA soft ranking ε = 0.02 45.79 ± 1.16 4.4h ± 1.4h 2.0x 71.4 ± 50.8

PASHA soft ranking ε = 0.025 46.01 ± 1.00 3.2h ± 1.0h 2.8x 28.6 ± 27.7

PASHA soft ranking ε = 0.03 45.62 ± 1.48 2.4h ± 0.7h 3.6x 11.0 ± 10.0

PASHA soft ranking ε = 0.05 44.90 ± 1.42 1.8h ± 0.0h 5.0x 3.0 ± 0.0

PASHA soft ranking 1σ 45.63 ± 0.89 6.5h ± 1.3h 1.4x 177.1 ± 44.2

PASHA soft ranking 2σ 45.39 ± 1.22 4.5h ± 1.4h 1.9x 91.2 ± 58.0

PASHA soft ranking 3σ 44.90 ± 1.42 1.8h ± 0.0h 5.0x 3.0 ± 0.0

PASHA soft ranking mean distance 45.50 ± 1.12 6.2h ± 1.5h 1.4x 157.7 ± 54.7

PASHA soft ranking median distance 45.67 ± 0.95 6.3h ± 1.6h 1.4x 156.3 ± 52.2

PASHA RBO p=1.0, t=0.5 44.90 ± 1.42 1.8h ± 0.0h 5.0x 3.0 ± 0.0

PASHA RBO p=0.5, t=0.5 45.24 ± 1.13 6.4h ± 1.3h 1.4x 148.3 ± 56.9

PASHA RRR p=1.0, t=0.05 44.90 ± 1.42 1.8h ± 0.0h 5.0x 3.0 ± 0.0

PASHA RRR p=0.5, t=0.05 44.90 ± 1.42 1.8h ± 0.0h 5.0x 3.0 ± 0.0

PASHA ARRR p=1.0, t=0.05 44.90 ± 1.42 1.8h ± 0.0h 5.0x 3.0 ± 0.0

PASHA ARRR p=0.5, t=0.05 44.90 ± 1.42 1.8h ± 0.0h 5.0x 3.0 ± 0.0

One-epoch baseline 41.42 ± 4.98 1.0h ± 0.0h 8.8x 1.0 ± 0.0

Random baseline 20.75 ± 9.97 0.0h ± 0.0h N/A 0.0 ± 0.0
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Table B.7: Results of the HPO experiments on WMT and ImageNet tasks from the PD1

benchmark, using a selection of the most interesting candidates for ranking functions.

Mean and std of the best validation accuracy (or its equivalent as given in the PD1

benchmark).

Dataset Approach Accuracy (%) Runtime Speedup factor Max resources

WMT

ASHA 62.72 ± 1.41 43.7h ± 37.2h 1.0x 1357.4 ± 80.4

PASHA 62.04 ± 2.05 2.8h ± 0.6h 15.5x 37.8 ± 21.6

PASHA direct ranking 62.16 ± 1.75 39.3h ± 38.3h 1.1x 1024.0 ± 466.6

PASHA soft ranking ε = 2.5% 62.09 ± 2.04 1.3h ± 0.4h 33.4x 4.2 ± 2.4

PASHA soft ranking 2σ 62.52 ± 2.18 1.1h ± 0.1h 38.8x 3.0 ± 0.0

PASHA RBO p=0.5, t=0.5 61.44 ± 1.23 6.7h ± 7.8h 6.5x 147.6 ± 113.2

PASHA RRR p=0.5, t=0.05 62.52 ± 2.18 1.1h ± 0.1h 38.8x 3.0 ± 0.0

One-epoch baseline 62.36 ± 1.40 0.6h ± 0.0h 67.3x 1.0 ± 0.0

Random baseline 33.93 ± 21.96 0.0h ± 0.0h N/A 0.0 ± 0.0

ImageNet

ASHA 75.10 ± 2.03 7.3h ± 1.2h 1.0x 251.0 ± 0.0

PASHA 73.37 ± 2.71 3.8h ± 1.0h 1.9x 45.0 ± 30.1

PASHA direct ranking 75.10 ± 2.03 6.8h ± 0.7h 1.1x 247.8 ± 3.9

PASHA soft ranking ε = 2.5% 74.73 ± 1.99 4.3h ± 2.5h 1.7x 140.4 ± 112.8

PASHA soft ranking 2σ 75.82 ± 0.82 5.0h ± 1.6h 1.5x 133.0 ± 96.8

PASHA RBO p=0.5, t=0.5 74.80 ± 2.19 4.4h ± 2.1h 1.6x 117.4 ± 109.4

PASHA RRR p=0.5, t=0.05 74.98 ± 2.12 1.6h ± 0.0h 4.7x 3.0 ± 0.0

One-epoch baseline 63.40 ± 9.91 1.1h ± 0.0h 6.7x 1.0 ± 0.0

Random baseline 36.94 ± 31.05 0.0h ± 0.0h N/A 0.0 ± 0.0
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B.4 Investigation with Variable Maximum Resources

We analyse the impact of variable maximum resources (number of epochs) on how large

speedup PASHA provides over ASHA. More specifically, we change the maximum

resources available for ASHA and also the upper boundary on maximum resources

for PASHA. We utilize NASBench201 benchmark for these experiments and set the

number of epochs to 200 (default) or 50 (other details are the same as earlier). The

results in Table B.8 confirm that PASHA leads to larger speedups when there are more

epochs (and rung levels) available. This analysis also explains the modest speedups on

LCBench analysed earlier.

If the model is trained for a small number of epochs, it is worth redesigning the

HPO so that there are more rung levels available, enabling PASHA to give larger

speedups. This can be achieved by using sub-epoch resource levels – specifying the

rung levels and the minimum resources in terms of the number of iterations (neural

network weights updates). Based on the results observed across various benchmarks,

we would recommend having at least 5 rung levels in ASHA, with more rung levels

leading to larger speedups from PASHA over ASHA.

Table B.8: NASBench201 results. PASHA leads to larger speedups if the models are

trained with more epochs.

Dataset Number of epochs Approach Accuracy (%) Runtime Speedup factor Max resources

CIFAR-10

200
ASHA 93.85 ± 0.25 3.0h ± 0.6h 1.0x 200.0 ± 0.0

PASHA 93.57 ± 0.75 1.3h ± 0.6h 2.3x 36.1 ± 50.0

50
ASHA 93.78 ± 0.39 1.8h ± 0.2h 1.0x 50.0 ± 0.0

PASHA 93.58 ± 0.75 1.2h ± 0.4h 1.5x 22.0 ± 16.8

CIFAR-100

200
ASHA 71.69 ± 1.05 3.2h ± 0.9h 1.0x 200.0 ± 0.0

PASHA 71.84 ± 1.41 0.9h ± 0.4h 3.4x 20.5 ± 48.3

50
ASHA 72.24 ± 0.87 1.8h ± 0.3h 1.0x 50.0 ± 0.0

PASHA 71.91 ± 1.32 0.9h ± 0.3h 2.0x 10.5 ± 12.1

ImageNet16-120

200
ASHA 45.63 ± 0.81 8.8h ± 2.2h 1.0x 200.0 ± 0.0

PASHA 45.13 ± 1.51 2.9h ± 1.7h 3.1x 21.3 ± 48.1

50
ASHA 45.97 ± 0.99 5.2h ± 0.7h 1.0x 50.0 ± 0.0

PASHA 45.09 ± 1.52 2.7h ± 1.0h 1.9x 11.3 ± 11.7
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B.5 Analysis of Learning Curves

We analyse the NASBench201 learning curves in Figure B.1 and B.2. To make the anal-

ysis realistic and easier to grasp, we first sample a random subset of 256 configurations,

similarly as we do for our NAS experiments. Figure B.1 shows the learning curves of

the top three configurations (selected in terms of their final performance). We see that

these learning curves are very close to each other and frequently cross due to noise in

the training, allowing us to estimate a meaningful value of ε parameter (configurations

that repeatedly swap their order are very likely to be similarly good, so we can select

any of them because the goal is to find a strong configuration quickly rather than the

very best one). Figure B.2 shows all learning curves from the same random sample

of 256 configurations. In this case we can see that the learning curves are relatively

well-behaved (especially the ones at the top), and any exceptions are rare.
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Figure B.1: Analysis of how the learning curves of the top three configurations (in terms

of final validation accuracy; from a random sample of 256 configurations) evolve across

epochs. We see that such similar configurations frequently change their ranks, enabling

us to calculate a meaningful value of ε parameter.
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Figure B.2: Analysis of what the learning curves look like for a random sample of 256

configurations. We see that the learning curves are relatively well-behaved (especially

the ones at the top), and any exceptions are rare.
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B.6 Investigation of How Value ε Evolves

We analyse how the value of ε that is used for calculating soft ranking develops during

the HPO process. We show the results in Figure B.3 for the three different datasets

available in NASBench201 (taking one seed). The results show the obtained values of ε

are relatively small.
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Figure B.3: Analysis of how the value of ε evolves as we receive additional updates

about the performances of candidate configurations. Note that most of the updates are

obtained in the top rung due to how multi-fidelity methods work.
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B.7 Investigation of Percentile Value N

We investigate the impact of using various percentile values N used for estimating the

value of ε in Table B.9. The intuition is that we want to take some value on the top

end rather than the maximum distance in case there are some outliers. We see that the

results are relatively stable, even though larger value of N can lead to further speedups.

However, from the point of view of a practitioner we would still take N = 90 in case

there are any outliers in the specific new use-case.

Table B.9: NASBench201 results. PASHA leads to large improvements in runtime, while

achieving similar accuracy as ASHA. Investigation of various percentile values (N) to

use for calculating parameter ε.

Dataset Approach Accuracy (%) Runtime Speedup factor Max resources

CIFAR-10

ASHA 93.85 ± 0.25 3.0h ± 0.6h 1.0x 200.0 ± 0.0

PASHA N = 100% 93.70 ± 0.61 1.0h ± 0.4h 3.0x 13.8 ± 19.5

PASHA N = 95% 93.64 ± 0.59 1.0h ± 0.4h 2.8x 15.4 ± 19.5

PASHA N = 90% 93.57 ± 0.75 1.3h ± 0.6h 2.3x 36.1 ± 50.0

PASHA N = 80% 93.86 ± 0.53 1.5h ± 0.6h 1.9x 60.9 ± 60.7

One-epoch baseline 93.30 ± 0.61 0.3h ± 0.0h 8.5x 1.0 ± 0.0

Random baseline 72.88 ± 19.20 0.0h ± 0.0h N/A 0.0 ± 0.0

CIFAR-100

ASHA 71.69 ± 1.05 3.2h ± 0.9h 1.0x 200.0 ± 0.0

PASHA N = 100% 71.84 ± 1.41 0.8h ± 0.1h 3.9x 6.6 ± 2.9

PASHA N = 95% 71.84 ± 1.41 0.8h ± 0.1h 3.9x 6.6 ± 2.9

PASHA N = 90% 71.91 ± 1.32 0.9h ± 0.3h 3.5x 12.6 ± 19.2

PASHA N = 80% 71.78 ± 1.31 1.2h ± 0.6h 2.6x 56.0 ± 76.2

One-epoch baseline 65.57 ± 5.53 0.3h ± 0.0h 9.2x 1.0 ± 0.0

Random baseline 42.83 ± 18.20 0.0h ± 0.0h N/A 0.0 ± 0.0

ImageNet16-120

ASHA 45.63 ± 0.81 8.8h ± 2.2h 1.0x 200.0 ± 0.0

PASHA N = 100% 45.09 ± 1.61 2.3h ± 0.4h 3.7x 7.0 ± 2.8

PASHA N = 95% 45.26 ± 1.58 2.4h ± 0.4h 3.7x 7.4 ± 2.7

PASHA N = 90% 45.13 ± 1.51 2.9h ± 1.7h 3.1x 21.3 ± 48.1

PASHA N = 80% 45.36 ± 1.38 3.6h ± 1.2h 2.5x 40.5 ± 47.7

One-epoch baseline 41.42 ± 4.98 1.0h ± 0.0h 8.8x 1.0 ± 0.0

Random baseline 20.75 ± 9.97 0.0h ± 0.0h N/A 0.0 ± 0.0

∗∗∗

Initial work on PASHA was done during an internship at AWS. However, significant

amount of work was done outside of the internship as part of the PhD studies, including

paper writing, extension of the initial algorithm, running experiments.
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Appendix: Meta-Calibration

C.1 Learned L2 Regularization Values

We show the learned unit-wise L2 classifier regularization values in Figure C.1. The

results show there is a large variability in the coefficients and they take both positive

and negative values.
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Figure C.1: Histograms of the learned unit-wise L2 classifier regularization values.

C.2 Training Times Analysis

We report the training times of the different approaches in Table C.1 (for simplicity

we only include CE baseline as all baselines have similar training time). We see that

even if training with Meta-Calibration takes longer, the overall training time remains

manageable. If excellent calibration is key, longer training time is acceptable.

140
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Table C.1: Training times in hours. We used one NVIDIA Titan X for each experiment.

Meta-Calibration takes longer, but if excellent calibration is a priority, the additional time

is acceptable.

Dataset Model CE MC (Ours)

CIFAR-10

ResNet18 2.8h ± 0.1h 7.0h ± 0.2h

ResNet50 8.9h ± 0.1h 21.9h ± 0.1h

ResNet110 17.3h ± 0.3h 44.6h ± 7.1h

WideResNet26-10 9.2h ± 0.3h 29.7h ± 0.2h

CIFAR-100

ResNet18 2.7h ± 0.1h 12.4h ± 0.2h

ResNet50 8.9h ± 0.1h 26.4h ± 0.2h

ResNet110 17.3h ± 0.2h 50.5h ± 1.0h

WideResNet26-10 9.3h ± 0.4h 39.4h ± 6.7h

SVHN ResNet18 4.4h ± 0.6h 9.6h ± 0.1h

20 Newsgroups Global Pooling CNN 0.1h ± 0.0h 0.3h ± 0.1h

C.3 Cross-Domain Evaluation

C.3.1 Setup

To evaluate our framework’s calibration performance under distribution shift, we use

the CIFAR-C benchmark (Hendrycks and Dietterich, 2019). CIFAR-C contains a

relatively large variety of image corruptions, such as adding fog, pixelation, changes

to the brightness and many others (overall 19 corruption types). There are 5 levels of

severity for each of them, which can be interpreted as providing 95 domains. We select

22 of these as test domains following (Zhang et al., 2021). These include impulse noise,

motion blur, fog, and elastic transform at all levels of severity, and spatter and JPEG

compression at the maximum level of severity. All other domains from (Hendrycks and

Dietterich, 2019) are used during training and validation.

All approaches are trained with augmented (corrupted) data so that they can better

generalize across domains. In each step we sample a corruption to use from the set

of training corruptions. Meta-Calibration in particular samples a separate corruption

for the inner and outer loop so that it can train meta-parameters that are more likely to

generalize to new domains.

C.3.2 Results

We have evaluated our approach using CIFAR-C benchmark and ResNet18 model, and

we show the results in Table C.2 and C.3. We include both the average across all test
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domains as well as the result on the most challenging domain (worst case). We report

the mean and standard deviation across 3 repetitions. Meta-Calibration is still helpful

for obtaining better calibration in the cross-domain case, but not to as large an extent

as for clean data. While the efficacy of this algorithm likely depends on whether the

domain-shifts seen during meta-training are representative in strength of those seen

during meta-testing, we still view these as encouraging initial results that tools from

multi-domain meta-learning can be adapted to address model calibration under domain

shift. Studying how to more successfully exploit meta-learning for calibration in cross-

domain scenarios is an interesting research question that the ML community can focus

on in the future.

Table C.2: Test ECE (%, ↓) for our cross-domain experiments on CIFAR-C.

Dataset Case CE LS Brier MMCE FL FLSD MC (Ours)

CIFAR-10-C
Average 7.28 ± 0.03 3.13 ± 0.19 4.20 ± 0.81 4.12 ± 0.23 4.02 ± 0.26 4.13 ± 0.01 3.00 ± 0.28

Worst case 15.55 ± 0.32 9.43 ± 0.65 9.19 ± 1.84 5.47 ± 0.78 4.97 ± 0.64 9.05 ± 0.88 10.97 ± 0.99

CIFAR-100-C
Average 7.77 ± 0.09 5.13 ± 0.05 4.89 ± 0.06 6.07 ± 0.59 6.33 ± 0.23 7.06 ± 0.54 5.26 ± 2.03

Worst case 14.75 ± 1.09 9.42 ± 0.71 7.40 ± 0.32 8.30 ± 0.75 8.53 ± 0.16 8.94 ± 0.61 6.79 ± 2.37

Table C.3: Test error (%, ↓) for our cross-domain experiments on CIFAR-C.

Dataset Case CE LS Brier MMCE FL FLSD MC (Ours)

CIFAR-10-C
Average 10.60 ± 0.05 10.55 ± 0.19 10.67 ± 0.11 11.08 ± 0.18 11.05 ± 0.15 10.13 ± 0.04 11.22 ± 0.22

Worst case 21.83 ± 0.49 21.78 ± 0.18 21.32 ± 0.42 23.52 ± 0.29 23.34 ± 0.79 21.03 ± 0.80 23.57 ± 0.78

CIFAR-100-C
Average 34.20 ± 0.09 35.26 ± 0.09 34.27 ± 0.23 34.26 ± 0.22 34.14 ± 0.38 33.32 ± 0.10 34.68 ± 0.13

Worst case 57.10 ± 0.98 56.56 ± 0.91 56.95 ± 0.27 56.00 ± 0.20 55.87 ± 1.47 54.69 ± 0.44 55.76 ± 0.51

C.4 Comparison to SB-ECE

Soft-binned ECE (SB-ECE) approximates the binning operation in ECE so that it is

differentiable and can be used as an auxiliary loss during training (Karandikar et al.,

2021). Comparing DECE with SB-ECE, our DECE has both conceptual and empirical

advantages. Conceptual advantages are as follows: 1) We also make the accuracy

component of ECE differentiable, 2) SB-ECE binning estimate for the left-most and

right-most bin can be very inaccurate as a result of using bin’s center value, while our

binning approach does not suffer from this. The empirical advantages are:

• DECE provides a closer approximation to ECE than SB-ECE as empirically

evaluated in Figure C.2 and C.3. The quality of binning in SB-ECE is controlled
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by temperature parameter T , and we try both lower T = 0.0001 and higher

temperatures T = 0.01. The results show DECE provides a significantly better

approximation to ECE than SB-ECE regardless the value of the temperature. In

fact, we see that the quality of SB-ECE approximation is relatively insensitive to

the value of the temperature parameter T .

• Our Meta-Calibration with DECE leads to better calibration. Karandikar et al.

(2021) propose SB-ECE and SAvUC (soft version of accuracy versus uncertainty

calibration loss (Krishnan and Tickoo, 2020)) to be used as auxiliary losses to

encourage better calibration. We evaluate SB-ECE and SAvUC on our benchmark

setup, both in their original form (as a regularizer added to CE or Focal Loss)

and in our meta-learning framework (as part of meta-objective for LS learning)

in Table C.4. The results confirm the benefits of using Meta-Calibration with

meta-objective that includes DECE. We additionally include comparison of error

rates in Table C.5. The error rates remain similar to Meta-Calibration and the

other baselines, although instabilities can occur that lead to noticeably worse

error rates.

Karandikar et al. (2021) also introduce an alternative way of training called inter-

leaved training. In such training each epoch is split into two and a separate set is used

for training with respect to calibration. We have implemented and evaluated interleaved

training as described in (Karandikar et al., 2021), and we report test ECE and error (%)

in Table C.6 and C.7 respectively. The results suggest interleaved training generally

leads to worse ECE than our approach, in most cases significantly worse. Interleaved

training also leads to significantly worse error compared to our Meta-Calibration and

the other baselines. We attribute the empirical benefits of Meta-Calibration to using the

calibration objective for training only the label smoothing meta-parameters and also the

specialised meta-training that uses an inner and outer loop.

Table C.4: Test ECE (%, ↓) – comparison of Meta-Calibration (MC) that uses DECE vs

SB-ECE and SAvUC.

Dataset Model CE+SBECE CE+SAvUC FL3+SBECE FL3+SAvUC MC-SBECE MC-SAvUC MC (Ours)

CIFAR-10
ResNet18 5.37 ± 0.16 3.26 ± 0.02 1.31 ± 0.01 1.91 ± 0.09 2.63 ± 0.66 4.18 ± 0.49 1.17 ± 0.26

ResNet50 3.29 ± 0.37 3.36 ± 0.10 1.85 ± 0.03 1.54 ± 0.17 2.51 ± 0.90 2.50 ± 0.42 1.09 ± 0.09

CIFAR-100
ResNet18 5.21 ± 1.15 5.68 ± 0.26 2.77 ± 0.08 2.58 ± 0.10 5.72 ± 0.21 5.49 ± 0.54 2.52 ± 0.35

ResNet50 5.72 ± 0.39 12.34 ± 0.09 5.86 ± 0.01 4.93 ± 0.18 3.10 ± 0.13 7.53 ± 0.63 3.07 ± 0.18
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Figure C.2: T = 0.01: Pearson correlation coefficient between ECE/DECE and ECE/SB-

ECE, and the mean estimated value of ECE, DECE and SB-ECE for CIFAR-10 and

CIFAR-100 using ResNet18.
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Figure C.3: T = 0.0001: Pearson correlation coefficient between ECE/DECE and

ECE/SB-ECE, and the mean estimated value of ECE, DECE and SB-ECE for CIFAR-10

and CIFAR-100 using ResNet18.

Table C.5: Test error (%, ↓) – comparison of Meta-Calibration (MC) that uses DECE vs

SB-ECE and SAvUC.

Dataset Model CE+SBECE CE+SAvUC FL3+SBECE FL3+SAvUC MC-SBECE MC-SAvUC MC (Ours)

CIFAR-10
ResNet18 8.97 ± 0.04 5.07 ± 0.06 5.16 ± 0.10 5.20 ± 0.11 5.10 ± 0.12 5.17 ± 0.25 5.22 ± 0.06

ResNet50 12.39 ± 0.39 5.03 ± 0.10 5.04 ± 0.10 5.26 ± 0.23 5.30 ± 0.05 5.16 ± 0.21 5.46 ± 0.05

CIFAR-100
ResNet18 27.55 ± 0.18 22.64 ± 0.32 22.87 ± 0.34 22.88 ± 0.26 23.98 ± 0.14 23.83 ± 0.25 23.88 ± 0.20

ResNet50 28.33 ± 0.39 22.09 ± 0.13 22.40 ± 0.21 22.02 ± 0.41 23.51 ± 0.45 23.18 ± 0.26 23.22 ± 0.48
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Table C.6: Test ECE (%, ↓) – comparison of interleaved training and Meta-Calibration

(MC).

Dataset Model CE+SBECE CE+SAvUC FL3+SBECE FL3+SAvUC MC (Ours)

CIFAR-10
ResNet18 4.81 ± 1.25 4.67 ± 0.12 6.90 ± 0.18 1.52 ± 0.08 1.17 ± 0.26

ResNet50 3.44 ± 0.37 4.55 ± 0.15 6.38 ± 0.82 1.38 ± 0.31 1.09 ± 0.09

CIFAR-100
ResNet18 5.17 ± 1.23 10.04 ± 0.65 4.81 ± 1.05 1.73 ± 0.24 2.52 ± 0.35

ResNet50 6.74 ± 0.29 11.56 ± 2.98 4.35 ± 0.48 2.86 ± 0.27 3.07 ± 0.18

Table C.7: Test error (%, ↓) – comparison of interleaved training and Meta-Calibration

(MC).

Dataset Model CE+SBECE CE+SAvUC FL3+SBECE FL3+SAvUC MC (Ours)

CIFAR-10
ResNet18 19.09 ± 5.56 5.66 ± 0.13 14.22 ± 0.63 5.96 ± 0.13 5.22 ± 0.06

ResNet50 13.51 ± 1.01 5.56 ± 0.13 12.63 ± 0.56 6.15 ± 0.45 5.46 ± 0.05

CIFAR-100
ResNet18 37.66 ± 2.85 26.94 ± 1.62 39.97 ± 5.71 26.64 ± 0.47 23.88 ± 0.20

ResNet50 35.18 ± 1.24 24.75 ± 0.39 35.61 ± 2.22 25.45 ± 0.97 23.22 ± 0.48



Appendix D

Appendix: Meta Omnium

D.1 Full Dataset Details

We describe the full details of our multi-task meta-dataset in Table D.1 and provide

further high-level details in this section.

• Classification datasets: We reuse datasets selected in the initial release of Meta-

Album (Ullah et al., 2022). We split BCT (microscopy – bacteria) (Zieliński

et al., 2017), BRD (large-animals – birds) (Piosenka, b) and CRS (vehicles –

cars) (Krause et al., 2013) datasets into meta-training, in-domain meta-validation

and in-domain meta-testing splits. We perform the splits randomly and in terms

of classes – 70% for training, 15% validation and testing each. FLW (plants

– flowers) (Nilsback and Zisserman, 2008), MD-Mix (OCR) (Sun et al., 2021)

and PLK (small animals – plankton) (Heidi M. Sosik, 2015) datasets are used

for out-domain meta-validation. PLT-VIL (plant diseases) (Geetharamani and

Pandian, 2019), RESISC (remote sensing) (Cheng et al., 2017), SPT (human

actions – sports) (Piosenka, a) and TEX (manufacturing – textures) (Fritz et al.,

2004; Mallikarjuna et al., 2006; Kylberg, 2011; Lazebnik et al., 2005) for out-

domain meta-testing. We use the middle version (“Mini”) of these datasets as

processed by the authors of Meta-Album (Ullah et al., 2022), which allows us to

keep the overall size of Meta Omnium sufficiently small.

• Segmentation datasets: We first split FSS1000 (Li et al., 2020c) dataset into in-

domain train, validation, and test sets, i.e. FSS1000-Trn, FSS1000-Val, FSS1000-

Test. We use Vizwiz (Tseng et al., 2022) dataset for out-of-domain validation,

and a modified version of Pascal 5i (Shaban et al., 2017) and PH2 (Mendonça

146
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et al., 2013) datasets for out-of-domain testing. We exclude the object classes

from the out-of-domain datasets that overlap with FSS1000 to ensure the classes

during validation and testing are never seen during training.

• Keypoint estimation datasets: We use three keypoint datasets in our work, includ-

ing animal pose (Cao et al., 2019), synthetic animal pose (Mu et al., 2020) and

human pose (Andriluka et al., 2014). A single animal/human image is cropped

from the original picture according to absolute maximum and minimum keypoint

coordinates. The boundary is extended with 5 more pixels to avoid losing impor-

tant information at object edges. Different keypoint datasets would have various

target keypoints, so we cannot have a trivial solution like classification with a

N-way K-shot setting, which stands for sampling K samples from N categories.

Instead, we sample each keypoint task from one object category with only a fixed

number of keypoints. In detail, we randomly select 5 keypoints per task, and

train and fit the model to predict only 5 keypoints. This method leads to a general

meta-learning keypoint prediction model that learns to predict corresponding

keypoints from the limited support labels, which makes it possible for an arbitrary

number of keypoint prediction tasks when conducted on more complex keypoint

datasets.

• Regression datasets: We use regression datasets only for out-of-task (OOT) meta-

test evaluation, so they are not used during meta-training. More specifically we

use ShapeNet1D (Gao et al., 2022b), ShapeNet2D (Gao et al., 2022b), Distractor

(Gao et al., 2022b) and Pascal1D datasets (Yin et al., 2020). Because regression

problems typically require larger number of examples for adaptation, we use

5-times as many support examples compared to the other cases (e.g. instead

of 5-shot we have 25-shot case). For our analysis experiments we consider the

equivalent of variable 1-to-5-shot setting: variable 5-to-25-shot setting.

D.2 Additional Analysis

How Do Gradient-Based Meta-Learners Adapt Their Layers? A recent debate in

few-shot meta-learning has been around whether gradient-based meta-learners really

learn to adapt, or simply reuse features without adaptation. (Raghu et al., 2020) claimed

that feature reuse was the dominant effect after measuring the representational change
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Table D.1: Details of all task families included in Meta Omnium.

Task Family Dataset Name Domain # Classes # Images Cardinality Role Size (MB)

C
la

ss
ifi

ca
tio

n
BCT-Trn Microscopy 23 920 (5) Meta-train 8

BRD-Trn Bird 220 8800 (5) Meta-train 72

CRS-Trn Car 137 5480 (5) Meta-train 44

BCT-Val Microscopy 5 200 (5) ID Meta-val 1.7

BRD-Val Bird 47 1880 (5) ID Meta-val 15

CRS-Val Car 29 1160 (5) ID Meta-val 9

FLW Flowers 102 4080 (5) OD Meta-val 39

MD-MIX OCR 706 28240 (5) OD Meta-val 479

PLK Plankton 86 3440 (5) OD Meta-val 36

BCT-Test Microscopy 5 200 (5) ID Meta-test 1.7

BRD-Test Bird 48 1920 (5) ID Meta-test 16

CRS-Test Car 30 1200 (5) ID Meta-test 10

PLT-VIL Plant Disease 38 1520 (5) OD Meta-test 14

RESISC Remote Sensing 45 1800 (5) OD Meta-test 17

SPT Sports 73 2920 (5) OD Meta-test 27

TEX Textures 64 2560 (5) OD Meta-test 26

Se
gm

en
ta

tio
n

FSS1000-Trn Natural Image 520 5200 (2) Meta-train 331

FSS1000-Val Natural Image 240 2400 (2) ID Meta-val 150

FSS1000-Test Natural Image 240 2400 (2) ID Meta-test 53

Pascal 5i Natural Image 6 7247 (2) OD Meta-test 563

Vizwiz Natural Image 22 862 (2) OD Meta-val 24

PH2 (Skin) Medical Image 3 200 (2) OD Meta-test 114

K
ey

po
in

t

R
eg

re
ss

io
n

Animal pose - Trn Animal 2 3237 (20, 2) Meta-train 112

Animal pose - Val Animal 2 2038 (20, 2) ID Meta-val 54

Animal pose - Test Animal 1 842 (20, 2) ID Meta-test 18

Synthetic Animal Pose Synthetic Animal 2 20000 (18, 2) OD Meta-val 627

MPII Human 1 28882 (16, 2) OD Meta-test 265

R
eg

re
ss

io
n ShapeNet1D-Test Synthetic Image 60 3000 (2) OOT Meta-test 8

ShapeNet2D-Test Synthetic Image 300 9000 (4) OOT Meta-test 29

Distractor-Test Synthetic Image 200 7200 (2) OOT Meta-test 93

Pascal1D-Test Synthetic Image 15 1500 (1) OOT Meta-test 4

pre- and post-adaptation and finding that representational change was primarily in the

output layer. We analyze this using Canonical Correlation Analysis (CCA) (Raghu

et al., 2017; Morcos et al., 2018) for Meta Omnium, reporting the representational

change of multi-task MAML by layer for each task family during meta-testing. From

the results in Figure D.1, we observe that: 1) The degree of representational change

varies substantially with tasks, 2) Similar to (Raghu et al., 2020), there is greater

representational change at the later layers, especially the final output layer. However,

significant amount of adaptation is done also in the earlier layers, which we attribute

to the greater diversity of tasks and visual domains in Meta Omnium compared to the

simple recognition episodes in miniImageNet studied by (Raghu et al., 2020).
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Figure D.1: Analysis of the layer adaptation by MAML in Meta Omnium.

D.3 Additional Experimental Details

D.3.1 Hyperparameter Optimization

The details of how we perform hyperparameter optimization (HPO) are described in

Section 6.3.6, and in this section we provide additional details. The search space for

HPO is as follows (note that momentum is only used if SGD optimizer is selected):

• MAML and Meta-Curvature: meta-learning rate ∈ (10−4,10−1) (log scale), meta

optimizer ∈ {Adam,SGD}, momentum ∈ {0.0,0.9,0.99}, inner-loop learning

rate ∈ (10−3,0.5) (log scale)

• Proto-MAML: same as MAML and also parameter λ ∈ (0.01,100) (log scale)

that influences the prototype calculation in the case of keypoint estimation

• ProtoNet: meta-learning rate ∈ (10−4,10−1) (log scale), meta optimizer ∈
{Adam,SGD}, momentum∈{0.0,0.9,0.99} and distance temperature∈ (0.1,10.0)

(log scale) that is used for keypoint estimation

• DDRR: meta-learning rate∈ (10−4,10−1) (log scale), meta optimizer∈{Adam,SGD},
momentum ∈ {0.0,0.9,0.99} and λ ∈ (0.01,100) (log scale)

• Proto-FineTuning: learning rate∈ (10−4,10−1) (log scale), optimizer∈{Adam,SGD},
momentum ∈ {0.0,0.9,0.99} and λ ∈ (0.01,100) (log scale)

• FineTuning: learning rate ∈ (10−4,10−1) (log scale), optimizer ∈ {Adam,SGD}
and momentum ∈ {0.0,0.9,0.99}

• Linear-Readout and TFS: same as FineTuning
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After training a model with the candidate configuration for 5,000 iterations, we

evaluate its validation performance. We use 100 tasks for evaluating the in-domain

validation performance, and additional 100 tasks for evaluation of out-domain perfor-

mance. As part of our multi-objective HPO, we minimize the validation error rates (or

appropriate equivalent) and use each dataset as a separate objective. We perform HPO

on the primary variable 1-to-5 shot setting. We use the same hyperparameters also for

the 1-shot and 5-shot settings.

Our HPO is reasonably fast, and it generally takes between a few hours up to two

days in the slowest cases (using a single NVIDIA 1080 Ti GPU with 12GB memory

and using 4 CPUs). As a result, it is feasible to run the HPO even with modest resources

when designing new approaches for our multi-task scenario. We provide the found

hyperparameters within the released code.

D.3.2 Experimental Settings

Many of our experimental settings follow Meta-Album (Ullah et al., 2022)), whose

code-base we have also used as the starting point. All approaches use one task in a meta-

batch. We use 5 inner-loop steps during meta-training and 10 inner-loop steps during

evaluation for MAML, Proto-MAML and Meta-Curvature. We use gradient-clipping

of 5. DDRR uses an adjustment layer, the scale of which is initialized to 5.0 (with the

adjust base set to 1.0). Proto-FineTuning, FineTuning, Linear-Readout and TFS use 20

fine-tuning steps during evaluation. The training minibatch size for these approaches

is 16, while the testing minibatch size is 4. We use standard ImageNet normalization

for segmentation tasks, but we do not use normalization in the other cases, following

earlier work (Ullah et al., 2022).

We train each model for 30,000 iterations and evaluate the model on validation

data after every 2,500 tasks, including at the beginning and the end (used for early

stopping – model selection). We use 5-way tasks during both training and evaluation.

The number of shots is between 1 and 5 during meta-training, and we consider 3

setups for evaluation: variable 1-to-5-shot (primary), 1-shot and 5-shot (presented in the

appendix). The query size is 5 examples per category and this has been selected to be

consistent across the different datasets. Validation uses 600 tasks for each of in-domain

and out-domain evaluation. Testing uses 600 tasks per dataset to provide more rigorous

evaluation.

During evaluation, we randomly initialize the top layer weights (classifier) to enable
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Table D.2: In-domain single-task classification results. Mean test accuracy (%) and 95%

confidence interval across test tasks.

Method BCT-Test BRD-Test CRS-Test

MAML 78.09 ± 0.75 64.14 ± 1.17 33.87 ± 0.94

Proto-MAML 74.29 ± 0.83 51.99 ± 1.16 25.25 ± 0.61

Meta-Curvature 85.31 ± 0.66 71.99 ± 1.09 37.19 ± 0.95

ProtoNet 81.53 ± 0.66 75.39 ± 1.07 54.35 ± 1.12

DDRR 76.49 ± 0.80 69.25 ± 1.15 43.52 ± 1.03

Proto-FineTuning 42.92 ± 0.89 68.69 ± 1.17 40.81 ± 1.03

FineTuning 41.48 ± 0.85 52.51 ± 1.15 32.97 ± 0.78

Linear-Readout 45.44 ± 0.87 64.33 ± 1.12 36.11 ± 0.80

TFS 34.19 ± 0.86 35.14 ± 0.93 25.25 ± 0.71

any-way predictions, in line with previous literature (Ullah et al., 2022). We do this

for the approaches that perform fine-tuning (e.g. MAML or Fine-Tuning baseline).

Note that in approaches such as Proto-MAML the top layer is initialized using weights

derived from the prototypes or ridge regression solution.

D.4 Detailed Per-Dataset Results

We include detailed per-dataset results (various-shot evaluation), first showing the

single-task learning results for classification, segmentation and keypoint estimation,

followed by multi-task learning results. In each case, we separately report the results

for in-domain and out-of-domain evaluation. We also include detailed results for our

out-of-task evaluation using regression datasets. Summary 1-shot and 5-shot results are

included for the single and multi-task settings.
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Table D.3: Out-of-domain single-task classification results. Mean test accuracy (%) and

95% confidence interval across test tasks.

Method PLT_VIL RESISC SPT TEX

MAML 62.69 ± 1.14 51.83 ± 1.06 46.24 ± 1.05 85.49 ± 1.02

Proto-MAML 46.59 ± 1.00 39.79 ± 0.94 35.24 ± 0.91 77.11 ± 1.14

Meta-Curvature 61.88 ± 1.07 52.00 ± 1.13 45.11 ± 1.06 86.55 ± 0.98

ProtoNet 59.68 ± 1.15 51.17 ± 1.04 43.65 ± 1.06 83.02 ± 1.03

DDRR 60.28 ± 1.19 48.70 ± 1.04 42.83 ± 1.04 83.17 ± 1.10

Proto-FineTuning 51.50 ± 1.27 41.92 ± 1.06 39.54 ± 1.03 69.77 ± 1.39

FineTuning 46.83 ± 1.13 41.37 ± 0.96 36.03 ± 0.90 68.39 ± 1.23

Linear-Readout 52.68 ± 1.02 46.24 ± 1.00 41.39 ± 0.94 73.45 ± 1.13

TFS 43.87 ± 1.03 36.36 ± 0.90 35.07 ± 0.91 52.54 ± 1.33

Table D.4: In-domain single-task segmentation results. Mean test mIoU (%) and 95%

confidence interval across test tasks. Larger mIoU is better.

Method FSS1000-Test

MAML 54.70 ± 1.68

Proto-MAML 46.40 ± 1.62

Meta-Curvature 65.57 ± 1.21

ProtoNet 75.84 ± 0.98

DDRR 66.71 ± 1.20

Proto-FineTuning 59.96 ± 1.55

FineTuning 50.52 ± 1.59

Linear-Readout 34.00 ± 1.85

TFS 42.80 ± 1.52
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Table D.5: Out-of-domain single-task segmentation results. Mean test mIoU (%) and

95% confidence interval across test tasks. Larger mIoU is better.

Method Pascal 5i PH2

MAML 15.27 ± 1.29 68.88 ± 1.25

Proto-MAML 22.80 ± 1.19 65.46 ± 1.19

Meta-Curvature 27.66 ± 1.22 71.92 ± 0.80

ProtoNet 36.49 ± 1.39 77.82 ± 0.79

DDRR 29.07 ± 1.12 66.95 ± 0.77

Proto-FineTuning 21.03 ± 1.24 65.79 ± 1.21

FineTuning 16.23 ± 1.24 63.68 ± 1.11

Linear-Readout 5.67 ± 0.80 39.67 ± 1.91

TFS 15.45 ± 1.03 59.77 ± 1.18

Table D.6: In-domain single-task keypoint estimation results. Mean test PCK (%) and

95% confidence interval across test tasks. Larger PCK is better.

Method Animal pose - Test

MAML 25.36 ± 0.93

Proto-MAML 23.63 ± 0.84

Meta-Curvature 43.47 ± 0.99

ProtoNet 27.79 ± 0.89

DDRR 20.53 ± 0.72

Proto-FineTuning 21.27 ± 0.74

FineTuning 25.69 ± 0.90

Linear-Readout 22.09 ± 0.74

TFS 20.98 ± 0.63
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Table D.7: Out-of-domain single-task keypoint estimation results. Mean test PCK (%)

and 95% confidence interval across test tasks. Larger PCK is better.

Method MPII

MAML 33.04 ± 0.64

Proto-MAML 22.48 ± 0.64

Meta-Curvature 16.00 ± 0.39

ProtoNet 33.33 ± 0.71

DDRR 31.88 ± 0.63

Proto-FineTuning 33.10 ± 0.71

FineTuning 30.03 ± 0.53

Linear-Readout 26.86 ± 0.46

TFS 25.95 ± 0.52

Table D.8: In-domain multi-task learning results. Mean test score (%) and 95% confi-

dence interval across test tasks. Larger score is better in all cases.

Method FSS1000-Test BCT-Test BRD-Test CRS-Test Animal pose - Test

MAML 43.31 ± 1.60 89.05 ± 0.61 59.94 ± 0.99 28.19 ± 0.75 24.25 ± 0.79

Proto-MAML 53.03 ± 1.51 84.71 ± 0.70 59.79 ± 1.12 30.87 ± 0.87 21.63 ± 0.76

Meta-Curvature 42.60 ± 1.74 85.43 ± 0.66 76.85 ± 1.06 48.97 ± 1.09 18.21 ± 0.47

ProtoNet 63.32 ± 1.09 81.95 ± 0.68 72.31 ± 1.05 43.58 ± 1.04 20.10 ± 0.75

DDRR 40.39 ± 1.11 77.19 ± 0.73 51.47 ± 1.11 29.59 ± 0.83 22.77 ± 0.73

Proto-FineTuning 44.80 ± 1.62 41.11 ± 0.91 71.21 ± 1.21 44.85 ± 1.06 21.16 ± 0.74

FineTuning 41.31 ± 1.74 42.84 ± 0.89 55.41 ± 1.22 34.05 ± 0.81 18.05 ± 0.49

Linear-Readout 41.53 ± 1.66 39.07 ± 0.78 63.60 ± 1.04 35.18 ± 0.81 19.89 ± 0.52

TFS 38.66 ± 1.56 22.45 ± 0.54 22.74 ± 0.49 20.39 ± 0.39 14.09 ± 0.75

Table D.9: Out-of-domain multi-task learning results. Mean test score (%) and 95%

confidence interval across test tasks. Larger score is better in all cases.

Method PLT_VIL RESISC SPT TEX Pascal 5i PH2 MPII

MAML 60.81 ± 1.11 48.19 ± 1.04 39.23 ± 0.91 85.59 ± 1.02 15.57 ± 1.11 59.28 ± 1.32 23.85 ± 0.47

Proto-MAML 65.18 ± 1.18 54.04 ± 1.10 49.84 ± 1.09 85.85 ± 0.95 21.90 ± 1.16 64.51 ± 1.04 33.34 ± 0.68

Meta-Curvature 70.98 ± 1.09 56.05 ± 1.15 51.09 ± 1.18 89.63 ± 0.80 13.29 ± 1.12 55.78 ± 1.52 25.29 ± 0.39

ProtoNet 60.55 ± 1.10 50.13 ± 1.04 41.92 ± 1.05 82.71 ± 1.00 30.46 ± 1.11 68.95 ± 0.87 33.00 ± 0.69

DDRR 53.19 ± 1.13 41.49 ± 0.98 35.73 ± 0.98 77.05 ± 1.19 20.19 ± 0.68 54.35 ± 0.78 30.08 ± 0.59

Proto-FineTuning 55.05 ± 1.21 44.17 ± 1.05 41.79 ± 1.04 71.64 ± 1.33 15.19 ± 1.06 60.47 ± 1.30 30.04 ± 0.60

FineTuning 50.88 ± 1.16 43.59 ± 1.00 38.07 ± 0.94 72.41 ± 1.18 11.68 ± 1.02 60.58 ± 1.39 20.46 ± 0.33

Linear-Readout 49.78 ± 1.00 44.57 ± 0.98 40.83 ± 0.97 68.58 ± 1.12 14.37 ± 1.07 50.73 ± 1.96 23.47 ± 0.35

TFS 23.15 ± 0.51 23.01 ± 0.47 22.45 ± 0.49 26.63 ± 0.71 13.12 ± 0.96 58.41 ± 1.25 11.04 ± 0.29
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Table D.10: Evaluation of multi-task models on out-of-task regression datasets, using

variable 5-to-25-shot episodes. Lower value is better.

Method ShapeNet2D-Test Distractor-Test ShapeNet1D-Test Pascal1D-Test

MAML 95.44 ± 2.82 38.68 ± 0.60 54.20 ± 2.10 2.88 ± 0.10

Proto-MAML 69.94 ± 1.50 39.58 ± 0.69 63.17 ± 2.33 51.74 ± 1.15

Meta-Curvature 70.55 ± 2.32 38.73 ± 0.66 43.17 ± 2.03 12.04 ± 0.61

ProtoNet 63.50 ± 1.15 38.53 ± 0.58 84.53 ± 1.92 2.53 ± 0.06

DDRR 64.41 ± 1.64 41.67 ± 0.68 46.08 ± 1.90 2.11 ± 0.07

Proto-FineTuning 61.94 ± 2.25 39.44 ± 0.69 58.33 ± 2.54 4.17 ± 0.18

FineTuning 63.36 ± 1.54 51.52 ± 1.44 81.36 ± 2.12 6.54 ± 0.31

Linear-Readout 68.66 ± 1.94 40.53 ± 0.71 46.93 ± 2.05 2.62 ± 0.09

TFS 133.67 ± 2.67 95.36 ± 0.91 88.25 ± 1.88 6.63 ± 0.31

Table D.11: 5-way 1-shot results, reporting the same metrics as in our primary table with

variable-shot results.

Classification Segmentation Keypoints Average Rank
ID OOD ID OOD ID OOD ID OOD AVG

Si
ng

le
-T

as
k

MAML 50.8 50.8 44.1 33.6 34.7 33.4 4.3 4.0 4.2

Proto-MAML 53.5 52.4 46.0 39.2 23.5 14.8 4.7 4.7 4.7

Meta-Curvature 58.0 51.6 60.5 40.1 38.1 16.1 1.7 4.3 3.0
ProtoNet 61.7 50.2 73.7 52.5 22.5 31.9 2.7 3.7 3.2

DDRR 54.7 48.9 60.1 42.2 22.1 32.2 4.7 4.0 4.3

Proto-FineTuning 47.0 50.4 50.5 36.6 22.4 32.8 5.7 4.3 5.0

FineTuning 35.5 43.2 42.4 36.6 34.6 33.8 6.0 4.7 5.3

Linear-Readout 46.2 48.0 30.3 18.3 26.5 26.7 6.7 7.3 7.0

TFS 27.2 36.4 31.5 30.3 19.5 20.0 8.7 8.0 8.3

M
ul

ti-
Ta

sk

MAML 56.4 54.0 35.0 28.8 29.1 29.0 3.0 4.3 3.7

Proto-MAML 50.5 51.7 43.6 34.2 22.5 32.7 3.0 2.3 2.7

Meta-Curvature 62.4 56.1 29.2 25.6 16.0 22.3 5.7 5.7 5.7

ProtoNet 60.8 50.8 59.2 42.2 22.5 31.9 2.3 2.7 2.5
DDRR 47.3 46.2 36.4 33.2 19.6 29.3 5.0 4.7 4.8

Proto-FineTuning 47.2 52.1 33.6 33.9 19.2 28.1 6.3 3.7 5.0

FineTuning 37.2 43.9 38.2 33.4 23.5 23.8 4.3 5.7 5.0

Linear-Readout 40.3 43.7 24.5 22.3 21.3 22.8 7.0 8.0 7.5

TFS 22.0 24.2 30.2 30.2 9.4 9.3 8.3 8.0 8.2
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Table D.12: 5-way 5-shot results, reporting the same metrics as in our primary table with

variable-shot results.

Classification Segmentation Keypoints Average Rank
ID OOD ID OOD ID OOD ID OOD AVG

Si
ng

le
-T

as
k

MAML 63.2 67.7 57.6 45.0 22.2 33.6 4.7 3.3 4.0

Proto-MAML 57.0 52.3 49.9 46.7 22.3 29.6 5.0 5.7 5.3

Meta-Curvature 69.0 67.2 73.5 53.5 43.7 16.3 1.7 4.3 3.0

ProtoNet 74.3 64.0 75.9 55.9 29.4 33.9 1.3 2.0 1.7
DDRR 68.0 65.7 69.4 50.5 22.0 32.0 4.3 3.7 4.0

Proto-FineTuning 52.9 52.0 65.9 48.7 22.2 33.9 5.0 4.3 4.7

FineTuning 43.8 50.0 55.3 42.7 22.1 33.1 6.7 6.3 6.5

Linear-Readout 53.6 55.0 32.3 32.8 20.0 27.1 8.0 7.3 7.7

TFS 33.8 44.4 47.4 40.5 20.9 28.2 8.3 8.0 8.2

M
ul

ti-
Ta

sk

MAML 68.3 72.1 52.0 42.1 20.7 31.4 3.3 3.0 3.2

Proto-MAML 67.0 71.2 63.0 48.5 23.2 34.0 2.7 2.3 2.5
Meta-Curvature 76.7 73.8 49.7 38.1 19.6 27.7 4.3 5.3 4.8

ProtoNet 71.0 63.4 64.7 52.4 19.7 34.5 3.0 2.0 2.5
DDRR 58.0 59.2 42.5 38.3 23.5 30.0 4.7 6.0 5.3

Proto-FineTuning 52.7 51.3 50.4 40.6 21.3 32.5 4.3 5.0 4.7

FineTuning 47.8 54.2 46.6 41.5 18.1 22.3 7.3 6.0 6.7

Linear-Readout 48.2 50.9 45.8 38.4 19.7 25.5 6.3 7.0 6.7

TFS 22.4 23.9 40.7 38.3 15.8 12.1 9.0 8.3 8.7
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Zieliński, B., Plichta, A., Misztal, K., Spurek, P., Brzychczy-Włoch, M., and Ochońska,
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