4 research outputs found

    Graphene-Based Electromechanical Thermal Switches

    Get PDF
    Thermal management is an important challenge in modern electronics, avionics, automotive, and energy storage systems. While passive thermal solutions (like heat sinks or heat spreaders) are often used, actively modulating heat flow (e.g. via thermal switches or diodes) would offer additional degrees of control over the management of thermal transients and system reliability. Here we report the first thermal switch based on a flexible, collapsible graphene membrane, with low operating voltage, < 2 V. We also employ active-mode scanning thermal microscopy (SThM) to measure the device behavior and switching in real time. A compact analytical thermal model is developed for the general case of a thermal switch based on a double-clamped suspended membrane, highlighting the thermal and electrical design challenges. System-level modeling demonstrates the thermal trade-offs between modulating temperature swing and average temperature as a function of switching ratio. These graphene-based thermal switches present new opportunities for active control of fast (even nanosecond) thermal transients in densely integrated systems

    Intrinsic and Extrinsic Factors Influencing the Dynamics of VO2 Mott Oscillators

    Get PDF
    Oscillatory devices have recently attracted significant interest as key components of computing systems based on biomimetic neuronal spiking. An understanding of the time scales underlying the spiking is essential for engineering fast, controllable, low-energy devices. However, we find that the intrinsic dynamics of these devices is difficult to properly characterize, as they can be heavily influenced by the external circuitry used to measure them. Here we demonstrate these challenges using a VO2 Mott oscillator with a sub-100-nm effective size, achieved using a nanogap cut in a metallic carbon nanotube electrode. Given the nanoscale thermal volume of this device, it would be expected to exhibit rapid oscillations. However, due to external parasitics present within commonly used current sources, we see orders-of-magnitude slower dynamics. We outline methods for determining when measurements are dominated by extrinsic factors and discuss the operating conditions under which intrinsic oscillation frequencies may be observed.</p

    Localized Triggering of the Insulator-Metal Transition in VO2 Using a Single Carbon Nanotube

    Get PDF
    Vanadium dioxide (VO2) has been widely studied for its rich physics and potential applications, undergoing a prominent insulator-metal transition (IMT) near room temperature. The transition mechanism remains highly debated, and little is known about the IMT at nanoscale dimensions. To shed light on this problem, here we use ~1 nm wide carbon nanotube (CNT) heaters to trigger the IMT in VO2. Single metallic CNTs switch the adjacent VO2 at less than half the voltage and power required by control devices without a CNT, with switching power as low as ~85 μW at 300 nm device lengths. We also obtain potential and temperature maps of devices during operation using Kelvin Probe Microscopy (KPM) and Scanning Thermal Microscopy (SThM). Comparing these with three-dimensional electrothermal simulations, we find that the local heating of the VO2 by the CNT plays a key role in the IMT. These results demonstrate the ability to trigger IMT in VO2 using nanoscale heaters, and highlight the significance of thermal engineering to improve device behaviour
    corecore