12 research outputs found

    Surface structuring and wettability control of Polyvinyl fluoride (PVF) using extreme ultraviolet (EUV) surface modification.

    Get PDF
    In this study, surface modification of fluoropolymer Polyvinyl fluoride (PVF) films was performed using Extreme Ultraviolet (EUV) radiations to induce patterned structures on surface and to provide control over the surface wettability. Specially developed laser produced plasma based EUV source was used for surface structuring. The double stream gas-puff target was produced by injection of krypton and xenon (KrXe) gas mixture into a hollow stream of helium. Commercially available EKSPLA Nd:YAG 1.06 micron laser was used to irradiate the KrXe gas puff target with 3 nanosecond pulse duration having 0.8 J energy. The PVF films were irradiated with 50 and 200 EUV pulses. The surface characterisation of the pristine and EUV modified PVF polymer films was performed by Atomic Force Microscopy (AFM) for morphological modifications. To investigate chemical modifications, X-ray Photoelectron Spectroscopy was used. The wettability of the sample surfaces was examined by Water Contact Angle (W CA) measurements. EUV surface modification of PVF films resulted in formation of wall type rippled structures on the polymer surfaces. The surface roughness of the EUV treated surfaces was increased up to 287 nm and 21掳 reduction was observed in the WCA of the PVF films. Successful surface structuring and wettability control was obtained using EUV surface modification of PVF films

    Evaluation of morphology, mechanical properties and adhesion of boron nitride thin films produced using pulsed laser deposition

    No full text
    The article presents preliminary results of investigation on morphology (AFM, FTIR) of boron nitride thin films deposited onto steel substrates using PLD method. Mechanical properties (hardness and elastic modulus) of the coatings and their adhesion to the substrates were measured.On the basis of obtained results, the possibility of using steel as a substrate for pulsed laser depositionof BN films was confirmed.[b]Keywords[/b]: thin films, boron nitride, nanohardness, critical loa

    Revisiting semicontinuous silver films as surface-enhanced Raman spectroscopy substrates

    No full text
    Surface-enhanced Raman spectroscopy (SERS) is a very promising analytical technique for the detection and identification of trace amounts of analytes. Among the many substrates used in SERS of great interest are nanostructures fabricated using physical methods, such as semicontinuous metal films obtained via electron beam physical vapor deposition. In these studies, we investigate the influence of morphology of semicontinuous silver films on their SERS properties. The morphologies studied ranged from isolated particles through percolated films to almost continuous films. We found that films below the percolation threshold (transition from dielectric-like to metal-like) made of isolated silver structures provided the largest SERS enhancement of 4-aminothiophenol (4-ATP) analyte signals. The substrate closest to the percolation threshold has the SERS signal about four times lower than the highest signal sample

    Physico-Chemical Surface Modifications of Polyetheretherketone (PEEK) Using Extreme Ultraviolet (EUV) Radiation and EUV-Induced Nitrogen Plasma

    No full text
    In this work, the effect of extreme ultraviolet (EUV) radiation and the combination of EUV radiation and low-temperature nitrogen plasma on the physico-chemical properties of polyetheretherketone (PEEK) surfaces were presented. The laser-plasma EUV source based on a double gas puff target was used in this experiment to irradiate PEEK surfaces with nanosecond pulses of EUV radiation and to produce low-temperature plasma through the photoionization of nitrogen with EUV photons. The changes in surface morphology on irradiated polymer samples were examined using atomic force microscopy (AFM) and scanning electron microscopy (SEM). Chemical changes of the PEEK surfaces were analysed using X-ray photoelectron spectroscopy (XPS). EUV radiation and nitrogen plasma treatment caused significant changes in the topography of modified PEEK’s surfaces and an increase in their average roughness. Strong chemical decomposition, appearance of new functional groups as well as incorporation of nitrogen atoms up to ~17 at.% on the PEEK’s surface were observed

    Fabrication of silver nanoisland films by pulsed laser deposition for surface-enhanced Raman spectroscopy

    No full text
    The results of studies on the fabrication and characterization of silver nanoisland films (SNIFs) using pulsed laser deposition (PLD) and the evaluation of these films as potential surface-enhanced Raman scattering (SERS) substrates are reported. The SNIFs with thicknesses in a range of 4.7 卤 0.2 nm to 143.2 卤 0.2 nm were deposited under different conditions on silicon substrates. Size and morphology of the fabricated silver nanoislands mainly depend on the substrate temperature, and number and energy of the laser pulses. SERS properties of the fabricated films were evaluated by measuring SERS spectra of para-mercaptoaniline (pMA) molecules adsorbed on them. SERS enhancement factors are shown to depend on the SNIF morphology, which is modified by changes of the deposition conditions. The highest enhancement factor in the range of 105 was achieved for SNIFs that have oval and circular silver nanoislands with small distances between them

    Laser Activated and Electroless Metalized Polyurethane Coatings Containing Copper(II) L-Tyrosine and Glass Microspheres

    No full text
    Polyurethane coatings containing copper(II) L-tyrosine and glass microspheres were laser irradiated and underwent electroless metallization. Various sizes of glass microspheres were incorporated into the polyurethane coating matrix in order to examine their effects on surface activation and electroless metallization. The surface of the coatings was activated by using ArF excimer laser emitting ultraviolet radiation (位 = 193 nm) using different number of laser pulses and their fluence. The effects of surface activation and metallization were evaluated mainly based on optical and scanning electron microcopies (SEM), energy-dispersive X-ray spectroscopy (EDX) and photoelectron spectroscopy (XPS). It was found that the presence of glass microspheres enabled the reduction in copper complex content, intensified the ablation process (higher cone-like structures created) and resulted in higher content of copper metallic seeds. On the other hand, the glass microspheres concentration, which was higher for lower size microspheres, was advantageous for obtaining a fully metallized layer

    Effect of Extreme Ultraviolet (EUV) Radiation and EUV Induced, N2 and O2 Based Plasmas on a PEEK Surface鈥檚 Physico-Chemical Properties and MG63 Cell Adhesion

    No full text
    Polyetheretherketone (PEEK), due to its excellent mechanical and physico-chemical parameters, is an attractive substitute for hard tissues in orthopedic applications. However, PEEK is hydrophobic and lacks surface-active functional groups promoting cell adhesion. Therefore, the PEEK surface must be modified in order to improve its cytocompatibility. In this work, extreme ultraviolet (EUV) radiation and two low-temperature, EUV induced, oxygen and nitrogen plasmas were used for surface modification of polyetheretherketone. Polymer samples were irradiated with 100, 150, and 200 pulses at a 10 Hz repetition rate. The physical and chemical properties of EUV and plasma modified PEEK surfaces, such as changes of the surface topography, chemical composition, and wettability, were examined using atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and goniometry. The human osteoblast-like MG63 cells were used for the analysis of cell viability and cell adhesion on all modified PEEK surfaces. EUV radiation and two types of plasma treatment led to significant changes in surface topography of PEEK, increasing surface roughness and formation of conical structures. Additionally, significant changes in the chemical composition were found and were manifested with the appearance of new functional groups, incorporation of nitrogen atoms up to ~12.3 at.% (when modified in the presence of nitrogen), and doubling the oxygen content up to ~25.7 at.% (when modified in the presence of oxygen), compared to non-modified PEEK. All chemically and physically changed surfaces demonstrated cyto-compatible and non-cytotoxic properties, an enhancement of MG63 cell adhesion was also observed

    The Multi-Gas Sensor for Remote UAV and UGV Missions鈥擠evelopment and Tests

    No full text
    In this article, we present a versatile gas detector that can operate on an unmanned aerial vehicle (UAV) or unmanned ground vehicle (UGV). The device has six electrochemical modules, which can be selected to measure specific gases, according to the mission requirements. The gas intake is realized by a miniaturized vacuum pump, which provides immediate gas distribution to the sensors and improves a fast response. The measurement data are sent wirelessly to the operator鈥檚 computer, which continuously stores results and presents them in real time. The 2 m tubing allows measurements to be taken in places that are not directly accessible to the UGV or the UAV. While UAVs significantly enhanced the versatility of sensing applications, point gas detection is challenging due to the downwash effect and gas dilution produced by the rotors. In our work, we demonstrated the method of downwash effect reduction at aerial point gas measurements by applying a long-distance probe, which was kept between the UAV and the examined object. Moreover, we developed a safety connection protecting the UAV and sensor in case of accidental jamming of the tubing inside the examined cavity. The methods presented provide an effective gas metering strategy using UAVs

    Multi-technique characterisation of InAs-on-GaAs wafers with circular defect pattern

    No full text
    The article presents the results of diameter mapping for circular-symmetric disturbance of homogeneity of epitaxially grown InAs (100) layers on GaAs substrates. The set of acceptors (beryllium) doped InAs epilayers was studied in order to evaluate the impact of Be doping on the 2-inch InAs-on-GaAs wafers quality. During the initial identification of size and shape of the circular pattern, non-destructive optical techniques were used, showing a 100% difference in average roughness between the wafer centre and its outer part. On the other hand, no volumetric (bulk) differences are detectable using Raman spectroscopy and highresolution X-ray diffraction. The correlation between Be doping level and circular defect pattern surface area has been found
    corecore