21 research outputs found

    On Iterative Collision Search for LPN and Subset Sum

    Get PDF
    Iterative collision search procedures play a key role in developing combinatorial algorithms for the subset sum and learning parity with noise (LPN) problems. In both scenarios, the single-list pair-wise iterative collision search finds the most solutions and offers the best efficiency. However, due to its complex probabilistic structure, no rigorous analysis for it appears to be available to the best of our knowledge. As a result, theoretical works often resort to overly constrained and sub-optimal iterative collision search variants in exchange for analytic simplicity. In this paper, we present rigorous analysis for the single-list pair-wise iterative collision search method and its applications in subset sum and LPN. In the LPN literature, the method is known as the LF2 heuristic. Besides LF2, we also present rigorous analysis of other LPN solving heuristics and show that they work well when combined with LF2. Putting it together, we significantly narrow the gap between theoretical and heuristic algorithms for LPN

    Dissection-BKW

    Get PDF
    The slightly subexponential algorithm of Blum, Kalai and Wasserman (BKW) provides a basis for assessing LPN/LWE security. However, its huge memory consumption strongly limits its practical applicability, thereby preventing precise security estimates for cryptographic LPN/LWE instantiations. We provide the first time-memory trade-offs for the BKW algorithm. For instance, we show how to solve LPN in dimension kk in time 243klogk2^{\frac 43\frac k{\log k}} and memory 223klogk2^{\frac 23\frac k{\log k}}. Using the Dissection technique due to Dinur et al. (Crypto ’12) and a novel, slight generalization thereof, we obtain fine-grained trade-offs for any available (subexponential) memory while the running time remains subexponential. Reducing the memory consumption of BKW below its running time also allows us to propose a first quantum version QBKW for the BKW algorithm

    Role of retinoic receptors in lung carcinogenesis

    Get PDF
    Several in vitro and in vivo studies have examined the positive and negative effects of retinoids (vitamin A analogs) in premalignant and malignant lesions. Retinoids have been used as chemopreventive and anticancer agents because of their pleiotropic regulator function in cell differentiation, growth, proliferation and apoptosis through interaction with two types of nuclear receptors: retinoic acid receptors and retinoid X receptors. Recent investigations have gradually elucidated the function of retinoids and their signaling pathways and may explain the failure of earlier chemopreventive studies

    New Model of Macrophage Acquisition of the Lymphatic Endothelial Phenotype

    Get PDF
    Macrophage-derived lymphatic endothelial cell progenitors (M-LECPs) contribute to new lymphatic vessel formation, but the mechanisms regulating their differentiation, recruitment, and function are poorly understood. Detailed characterization of M-LECPs is limited by low frequency in vivo and lack of model systems allowing in-depth molecular analyses in vitro. Our goal was to establish a cell culture model to characterize inflammation-induced macrophage-to-LECP differentiation under controlled conditions.Time-course analysis of diaphragms from lipopolysaccharide (LPS)-treated mice revealed rapid mobilization of bone marrow-derived and peritoneal macrophages to the proximity of lymphatic vessels followed by widespread (∼50%) incorporation of M-LECPs into the inflamed lymphatic vasculature. A differentiation shift toward the lymphatic phenotype was found in three LPS-induced subsets of activated macrophages that were positive for VEGFR-3 and many other lymphatic-specific markers. VEGFR-3 was strongly elevated in the early stage of macrophage transition to LECPs but undetectable in M-LECPs prior to vascular integration. Similar transient pattern of VEGFR-3 expression was found in RAW264.7 macrophages activated by LPS in vitro. Activated RAW264.7 cells co-expressed VEGF-C that induced an autocrine signaling loop as indicated by VEGFR-3 phosphorylation inhibited by a soluble receptor. LPS-activated RAW264.7 macrophages also showed a 68% overlap with endogenous CD11b(+)/VEGFR-3(+) LECPs in the expression of lymphatic-specific genes. Moreover, when injected into LPS- but not saline-treated mice, GFP-tagged RAW264.7 cells massively infiltrated the inflamed diaphragm followed by integration into 18% of lymphatic vessels.We present a new model for macrophage-LECP differentiation based on LPS activation of cultured RAW264.7 cells. This system designated here as the "RAW model" mimics fundamental features of endogenous M-LECPs. Unlike native LECPs, this model is unrestricted by cell numbers, heterogeneity of population, and ability to change genetic composition for experimental purposes. As such, this model can provide a valuable tool for understanding the LECP and lymphatic biology

    Anopheles gambiae PGRPLC-Mediated Defense against Bacteria Modulates Infections with Malaria Parasites

    Get PDF
    Recognition of peptidoglycan (PGN) is paramount for insect antibacterial defenses. In the fruit fly Drosophila melanogaster, the transmembrane PGN Recognition Protein LC (PGRP-LC) is a receptor of the Imd signaling pathway that is activated after infection with bacteria, mainly Gram-negative (Gram−). Here we demonstrate that bacterial infections of the malaria mosquito Anopheles gambiae are sensed by the orthologous PGRPLC protein which then activates a signaling pathway that involves the Rel/NF-κB transcription factor REL2. PGRPLC signaling leads to transcriptional induction of antimicrobial peptides at early stages of hemolymph infections with the Gram-positive (Gram+) bacterium Staphylococcus aureus, but a different signaling pathway might be used in infections with the Gram− bacterium Escherichia coli. The size of mosquito symbiotic bacteria populations and their dramatic proliferation after a bloodmeal, as well as intestinal bacterial infections, are also controlled by PGRPLC signaling. We show that this defense response modulates mosquito infection intensities with malaria parasites, both the rodent model parasite, Plasmodium berghei, and field isolates of the human parasite, Plasmodium falciparum. We propose that the tripartite interaction between mosquito microbial communities, PGRPLC-mediated antibacterial defense and infections with Plasmodium can be exploited in future interventions aiming to control malaria transmission. Molecular analysis and structural modeling provided mechanistic insights for the function of PGRPLC. Alternative splicing of PGRPLC transcripts produces three main isoforms, of which PGRPLC3 appears to have a key role in the resistance to bacteria and modulation of Plasmodium infections. Structural modeling indicates that PGRPLC3 is capable of binding monomeric PGN muropeptides but unable to initiate dimerization with other isoforms. A dual role of this isoform is hypothesized: it sequesters monomeric PGN dampening weak signals and locks other PGRPLC isoforms in binary immunostimulatory complexes further enhancing strong signals

    AI is a viable alternative to high throughput screening: a 318-target study

    Get PDF
    : High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNet® convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNet® model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery

    Secure Dot Product of Outsourced Encrypted Vectors and its Application to SVM

    No full text
    It is getting popular for users to outsource their data to a cloud system as well as leverage the high-speed computing power of this third-party platform to process the data. For the sake of data privacy, outsourced data from different users is usually encrypted under different keys. To enable users to run data mining algorithms collaboratively in the cloud, we need an efficient scheme to process the encrypted data under multiple keys. Dot product is one of the most important building blocks of data mining algorithms. In this paper, we show how to give the cloud the permission to decrypt the encrypted dot product of two encrypted vectors without compromising the privacy of the data owners. We propose the first feasible scheme that trains a SVM (Support Vector Machine) classifier for both horizontally and vertically partitioned datasets using only one server. Existing schemes either can only handle a much simpler classifier (linear mean classifier) with two non-colluding servers or can only be applied to vertically partitioned dataset. We also show that our scheme not only preserves data privacy but also runs faster than existing schemes

    Network-level architecture and the evolutionary potential of underground metabolism

    No full text
    A central unresolved issue in evolutionary biology is how metabolic innovations emerge. Low-level enzymatic side activities are frequent and can potentially be recruited for new biochemical functions. However, the role of such underground reactions in adaptation toward novel environments has remained largely unknown and out of reach of computational predictions, not least because these issues demand analyses at the level of the entire metabolic network. Here, we provide a comprehensive computational model of the underground metabolism in Escherichia coli. Most underground reactions are not isolated and 45% of them can be fully wired into the existing network and form novel pathways that produce key precursors for cell growth. This observation allowed us to conduct an integrated genome-wide in silico and experimental survey to characterize the evolutionary potential of E. coli to adapt to hundreds of nutrient conditions. We revealed that underground reactions allow growth in new environments when their activity is increased. We estimate that at least approximately 20% of the underground reactions that can be connected to the existing network confer a fitness advantage under specific environments. Moreover, our results demonstrate that the genetic basis of evolutionary adaptations via underground metabolism is computationally predictable. The approach used here has potential for various application areas from bioengineering to medical genetics
    corecore