44 research outputs found

    A method for calculating spectral statistics based on random-matrix universality with an application to the three-point correlations of the Riemann zeros

    Full text link
    We illustrate a general method for calculating spectral statistics that combines the universal (Random Matrix Theory limit) and the non-universal (trace-formula-related) contributions by giving a heuristic derivation of the three-point correlation function for the zeros of the Riemann zeta function. The main idea is to construct a generalized Hermitian random matrix ensemble whose mean eigenvalue density coincides with a large but finite portion of the actual density of the spectrum or the Riemann zeros. Averaging the random matrix result over remaining oscillatory terms related, in the case of the zeta function, to small primes leads to a formula for the three-point correlation function that is in agreement with results from other heuristic methods. This provides support for these different methods. The advantage of the approach we set out here is that it incorporates the determinental structure of the Random Matrix limit.Comment: 22 page

    Two-point correlation function for Dirichlet L-functions

    Full text link
    The two-point correlation function for the zeros of Dirichlet L-functions at a height E on the critical line is calculated heuristically using a generalization of the Hardy-Littlewood conjecture for pairs of primes in arithmetic progression. The result matches the conjectured Random-Matrix form in the limit as EE\rightarrow\infty and, importantly, includes finite-E corrections. These finite-E corrections differ from those in the case of the Riemann zeta-function, obtained in (1996 Phys. Rev. Lett. 77 1472), by certain finite products of primes which divide the modulus of the primitive character used to construct the L-function in question.Comment: 10 page

    Spectral statistics for unitary transfer matrices of binary graphs

    Full text link
    Quantum graphs have recently been introduced as model systems to study the spectral statistics of linear wave problems with chaotic classical limits. It is proposed here to generalise this approach by considering arbitrary, directed graphs with unitary transfer matrices. An exponentially increasing contribution to the form factor is identified when performing a diagonal summation over periodic orbit degeneracy classes. A special class of graphs, so-called binary graphs, is studied in more detail. For these, the conditions for periodic orbit pairs to be correlated (including correlations due to the unitarity of the transfer matrix) can be given explicitly. Using combinatorial techniques it is possible to perform the summation over correlated periodic orbit pair contributions to the form factor for some low--dimensional cases. Gradual convergence towards random matrix results is observed when increasing the number of vertices of the binary graphs.Comment: 18 pages, 8 figure

    On the Nodal Count Statistics for Separable Systems in any Dimension

    Full text link
    We consider the statistics of the number of nodal domains aka nodal counts for eigenfunctions of separable wave equations in arbitrary dimension. We give an explicit expression for the limiting distribution of normalised nodal counts and analyse some of its universal properties. Our results are illustrated by detailed discussion of simple examples and numerical nodal count distributions.Comment: 21 pages, 4 figure

    On the spacing distribution of the Riemann zeros: corrections to the asymptotic result

    Full text link
    It has been conjectured that the statistical properties of zeros of the Riemann zeta function near z = 1/2 + \ui E tend, as EE \to \infty, to the distribution of eigenvalues of large random matrices from the Unitary Ensemble. At finite EE numerical results show that the nearest-neighbour spacing distribution presents deviations with respect to the conjectured asymptotic form. We give here arguments indicating that to leading order these deviations are the same as those of unitary random matrices of finite dimension Neff=log(E/2π)/12ΛN_{\rm eff}=\log(E/2\pi)/\sqrt{12 \Lambda}, where Λ=1.57314...\Lambda=1.57314 ... is a well defined constant.Comment: 9 pages, 3 figure

    Asymptotic mean density of sub-unitary ensemble

    Full text link
    The large N limit of mean spectral density for the ensemble of NxN sub-unitary matrices derived by Wei and Fyodorov (J. Phys. A: Math. Theor. 41 (2008) 50201) is calculated by a modification of the saddle point method. It is shown that the result coincides with the one obtained within the free probability theory by Haagerup and Larsen (J. Funct. Anal. 176 (2000) 331)

    Random matrix theory, the exceptional Lie groups, and L-functions

    Full text link
    There has recently been interest in relating properties of matrices drawn at random from the classical compact groups to statistical characteristics of number-theoretical L-functions. One example is the relationship conjectured to hold between the value distributions of the characteristic polynomials of such matrices and value distributions within families of L-functions. These connections are here extended to non-classical groups. We focus on an explicit example: the exceptional Lie group G_2. The value distributions for characteristic polynomials associated with the 7- and 14-dimensional representations of G_2, defined with respect to the uniform invariant (Haar) measure, are calculated using two of the Macdonald constant term identities. A one parameter family of L-functions over a finite field is described whose value distribution in the limit as the size of the finite field grows is related to that of the characteristic polynomials associated with the 7-dimensional representation of G_2. The random matrix calculations extend to all exceptional Lie groupsComment: 14 page

    Two-point correlations of the Gaussian symplectic ensemble from periodic orbits

    Full text link
    We determine the asymptotics of the two-point correlation function for quantum systems with half-integer spin which show chaotic behaviour in the classical limit using a method introduced by Bogomolny and Keating [Phys. Rev. Lett. 77 (1996) 1472-1475]. For time-reversal invariant systems we obtain the leading terms of the two-point correlation function of the Gaussian symplectic ensemble. Special attention has to be paid to the role of Kramers' degeneracy.Comment: 7 pages, no figure

    Distribution of the Riemann zeros represented by the Fermi gas

    Full text link
    The multiparticle density matrices for degenerate, ideal Fermi gas system in any dimension are calculated. The results are expressed as a determinant form, in which a correlation kernel plays a vital role. Interestingly, the correlation structure of one-dimensional Fermi gas system is essentially equivalent to that observed for the eigenvalue distribution of random unitary matrices, and thus to that conjectured for the distribution of the non-trivial zeros of the Riemann zeta function. Implications of the present findings are discussed briefly.Comment: 7 page
    corecore