The two-point correlation function for the zeros of Dirichlet L-functions at
a height E on the critical line is calculated heuristically using a
generalization of the Hardy-Littlewood conjecture for pairs of primes in
arithmetic progression. The result matches the conjectured Random-Matrix form
in the limit as E→∞ and, importantly, includes finite-E
corrections. These finite-E corrections differ from those in the case of the
Riemann zeta-function, obtained in (1996 Phys. Rev. Lett. 77 1472), by certain
finite products of primes which divide the modulus of the primitive character
used to construct the L-function in question.Comment: 10 page