116 research outputs found

    Photoenergy transduction in halobacterium halobium

    Get PDF
    The structure and function of a rhodopsin-like pigment bacteriorhodopsin, discovered and isolated from the membranes of the halophile Halobacterium halobium, were studied. Intermediatesm appearing in the cyclic photoreaction that drives the proton translocation, were spectroscopically characterized. The charge translocation in membrane monolayers and mulitlayers placed between electrodes were kinetically resolved. A model was developed for the proton translocation process, in which the isomerization of the retinal Schiff base decreases its pK to drive the proton off and simultaneaouly changes the connectivity from the cytoplasmic surface to the external surface. The stoichiometry of proton pumping in intact cells and the effect of the light generated electrochemical potential on the kinetics of the photoreaction cycle and the synthesis of ATP were investigated

    An assessment of temporal, spatial and taxonomic trends in harmful algal toxin exposure in stranded marine mammals from the US New England coast

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Fire, S. E., Bogomolni, A., DiGiovanni, R. A., Jr., Early, G., Leighfield, T. A., Matassa, K., Miller, G. A., Moore, K. M. T., Moore, M., Niemeyer, M., Pugliares, K., Wang, Z., & Wenzel, F. W. An assessment of temporal, spatial and taxonomic trends in harmful algal toxin exposure in stranded marine mammals from the US New England coast. Plos One, 16(1),(2021): e0243570, https://doi.org/10.1371/journal.pone.0243570.Despite a long-documented history of severe harmful algal blooms (HABs) in New England coastal waters, corresponding HAB-associated marine mammal mortality events in this region are far less frequent or severe relative to other regions where HABs are common. This long-term survey of the HAB toxins saxitoxin (STX) and domoic acid (DA) demonstrates significant and widespread exposure of these toxins in New England marine mammals, across multiple geographic, temporal and taxonomic groups. Overall, 19% of the 458 animals tested positive for one or more toxins, with 15% and 7% testing positive for STX and DA, respectively. 74% of the 23 different species analyzed demonstrated evidence of toxin exposure. STX was most prevalent in Maine coastal waters, most frequently detected in common dolphins (Delphinus delphis), and most often detected during July and October. DA was most prevalent in animals sampled in offshore locations and in bycaught animals, and most frequently detected in mysticetes, with humpback whales (Megaptera novaeangliae) testing positive at the highest rates. Feces and urine appeared to be the sample matrices most useful for determining the presence of toxins in an exposed animal, with feces samples having the highest concentrations of STX or DA. No relationship was found between the bloom season of toxin-producing phytoplankton and toxin detection rates, however STX was more likely to be present in July and October. No relationship between marine mammal dietary preference and frequency of toxin detection was observed. These findings are an important part of a framework for assessing future marine mammal morbidity and mortality events, as well as monitoring ecosystem health using marine mammals as sentinel organisms for predicting coastal ocean changes.S.F. - NOAA John H. Prescott Marine Mammal Rescue Assistance Grant Program #NA16NMF4390151 S.F. - NOAA John H. Prescott Marine Mammal Rescue Assistance Grant Program #NA17NMF4390082 S.F. - Florida Tech Department of Biological Sciences S.F. - Florida Tech John H. Evans Library Open Access Subvention Fund. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Attractant and Repellent Signaling Conformers of Sensory Rhodopsin−Transducer Complexes†

    Get PDF
    ABSTRACT: Attractant and repellent signaling conformers of the dual-signaling phototaxis receptor sensory rhodopsin I and its transducer subunit (SRI-HtrI) have recently been distinguished experimentally by the opposite connection of their retinylidene protonated Schiff bases to the outwardly located periplasmic side and inwardly located cytoplasmic side. Here we show that the pKa of the outwardly located Asp76 counterion in the outwardly connected conformer is lowered by ∼1.5 units from that of the inwardly connected conformer. The pK a difference enables quantitative determination of the relative amounts of the two conformers in wild-type cells and behavioral mutants prior to photoexcitation, comparison of their absorption spectra, and determination of their relative signaling efficiency. We have shown that the onephoton excitation of the SRI-HtrI attractant conformer causes a Schiff base connectivity switch from inwardly connected to outwardly connected states in the attractant signaling photoreaction. Conversely, a second near-UV photon drives the complex back to the inwardly connected conformer in the repellent signaling photoreaction. The results suggest a model of the color-discriminating dual-signaling mechanism in which phototaxis responses (his-kinase modulation) result from the photointerconversion of the two oppositely connected SRI-HtrI conformers by one-photon and two-photon activation. Furthermore, we find that the related repellent phototaxis SRII-HtrII receptor complex has an outwardly connecte

    Spectroscopic discrimination of the three rhodopsinlike pigments in Halobacterium halobium membranes.

    No full text
    Membranes of Halobacterium halobium contain two photochemically reactive retinal pigments in addition to the proton pump bacteriorhodopsin. One, halorhodopsin, is also an electrogenic ion pump with a fast (on a scale of milliseconds) photoreaction cycle. The other, s-rhodopsin, is active in the same spectral region, but has a much slower photoreaction cycle (on a scale of seconds). S-rhodopsin is not an electrogenic ion pump and its properties suggest it functions as the receptor pigment for phototaxis. All three pigments have very similar absorption spectra. The recent isolation of mutants deficient in both bacteriorhodopsin and halorhodopsin and in retinal synthesis has allowed us to resolve the absorption spectra of s-rhodopsin and halorhodopsin. At neutral pH s-rhodopsin has an absorption maximum at 587 +/- 2 nm and halorhodopsin at 578 +/- 2 nm. At pH 10.8, lambda max for s-rhodopsin is shifted to 552 nm and extinction decreases slightly (15%) while halorhodopsin loses all extinction above 500 nm. Both effects are fully reversible and allow determination of the amounts of s-rhodopsin and halorhodopsin in membrane preparations containing both pigments. Both pigments were present in earlier studies of H. halobium membranes, and in view of these findings, several observations must be reinterpreted

    The photochemical reactions of bacterial sensory rhodopsin-I. Flash photolysis study in the one microsecond to eight second time window.

    Get PDF
    Halobacterium halobium Flx mutants are deficient in bacteriorhodopsin (bR) and halorhodopsin (hR). Such strains are phototactic and the light signal detectors are two additional retinal pigments, sensory rhodopsins I and II (sR-I and sR-II), which absorb maximally at 587 and 480 nm, respectively. A retinal-deficient Flx mutant, Flx5R, overproduces sR-I-opsin and does not show any photochemical activity other than that of sR-I after the pigment is regenerated by addition of all-trans retinal. Using native membrane vesicles from this strain, we have resolved a new photointermediate in the sR-I photocycle between the early bathointermediate S610 and the later intermediate S373. The new form, S560, resembles the L intermediate of bR in its position in the photoreaction cycle, its relatively low extinction, and its moderate blue shift. It forms with a half-time of approximately 90 microseconds at 21 degrees C, concomitant with the decay of S610. Its decay with a half-time of 270 microseconds parallels the appearance of S373. From a data set consisting of laser flash-induced absorbance changes (300 ns, 580-nm excitation) measured at 24 wavelengths from 340 to 720 nm in a time window spanning 1 microsecond to 8 s we have calculated the spectra of the photocycle intermediates assuming a unidirectional, unbranched reaction scheme

    Identification of a third rhodopsin-like pigment in phototactic Halobacterium halobium.

    No full text
    • …
    corecore