6 research outputs found

    Network anatomy in logopenic variant of primary progressive aphasia

    Get PDF
    The logopenic variant of primary progressive aphasia (lvPPA) is a neurodegenerative syndrome characterized linguistically by gradual loss of repetition and naming skills resulting from left posterior temporal and inferior parietal atrophy. Here, we sought to identify which specific cortical loci are initially targeted by the disease (epicenters) and investigate whether atrophy spreads through predetermined networks. First, we used cross-sectional structural MRI data from individuals with lvPPA to define putative disease epicenters using a surface-based approach paired with an anatomically fine-grained parcellation of the cortical surface (i.e., HCP-MMP1.0 atlas). Second, we combined cross-sectional functional MRI data from healthy controls and longitudinal structural MRI data from individuals with lvPPA to derive the epicenter-seeded resting-state networks most relevant to lvPPA symptomatology and ascertain whether functional connectivity in these networks predicts longitudinal atrophy spread in lvPPA. Our results show that two partially distinct brain networks anchored to the left anterior angular and posterior superior temporal gyri epicenters were preferentially associated with sentence repetition and naming skills in lvPPA. Critically, the strength of connectivity within these two networks in the neurologically-intact brain significantly predicted longitudinal atrophy progression in lvPPA. Taken together, our findings indicate that atrophy progression in lvPPA, starting from inferior parietal and temporoparietal junction regions, predominantly follows at least two partially nonoverlapping pathways, which may influence the heterogeneity in clinical presentation and prognosis

    Dissociating nouns and verbs in temporal and perisylvian networks: Evidence from neurodegenerative diseases

    No full text
    Naming of nouns and verbs can be selectively impaired in neurological disorders, but the specificity of the neural and cognitive correlates of such dissociation remains unclear. Functional imaging and stroke research sought to identify cortical regions selectively recruited for nouns versus verbs, yet findings are inconsistent. The present study investigated this issue in neurodegenerative diseases known to selectively affect different brain networks, thus providing new critical evidence of network specificity. We examined naming performances on nouns and verbs in 146 patients with different neurodegenerative syndromes (Primary Progressive Aphasia - PPA, Alzheimer's disease - AD, and behavioral variant Frontotemporal Dementia - FTD) and 30 healthy adults. We then correlated naming scores with MRI-derived cortical thickness values as well as with performances in semantic and syntactic tasks, across all subjects. Results indicated that patients with the semantic variant PPA named significantly fewer nouns than verbs. Instead, nonfluent/agrammatic PPA patients named fewer verbs than nouns. Across all subjects, performance on nouns (adjusted for verbs) specifically correlated with cortical atrophy in left anterior temporal regions, and performance on verbs (adjusted for nouns) with atrophy in left inferior and middle frontal, inferior parietal and posterior temporal regions. Furthermore, lower lexical-semantic abilities correlated with deficits in naming both nouns and verbs, while lower syntactic abilities only correlated with naming verbs. Our results show that different neural and cognitive mechanisms underlie naming of specific grammatical categories in neurodegenerative diseases. Importantly, our findings showed that verb processing depends on a widespread perisylvian networks, suggesting that some regions might be involved in processing different types of action knowledge. These findings have important implications for early differential diagnosis of neurodegenerative disorders

    Functional and morphological correlates of developmental dyslexia: A multimodal investigation of the ventral occipitotemporal cortex

    No full text
    Background and Purpose The ventral occipitotemporal cortex (vOT) is a region crucial for reading acquisition through selective tuning to printed words. Developmental dyslexia is a disorder of reading with underlying neurobiological bases often associated with atypical neural responses to printed words. Previous studies have discovered anomalous structural development and function of the vOT in individuals with dyslexia. However, it remains unclear if or how structural abnormalities relate to functional alterations.Methods In this study, we acquired structural, functional (words and faces processing), and diffusion MRI data from 26 children with dyslexia (average age = 10.4 +/- 2.0 years) and 14 age-matched typically developing readers (average age = 10.4 +/- 1.6 years). Morphological indices of local gyrification, neurite density (i.e., dendritic arborization structure), and orientation dispersion (i.e., dendritic arborization orientation) were analyzed within the vOT region that showed preferential activation in typically developing readers for words (as compared to face stimuli).Results The two cohorts diverged significantly in both functional and structural measures. Compared to typically developing controls, children with dyslexia did not show selectivity for words in the left vOT (contrast: words > false fonts). This lack of tuning to printed words was associated with greater neurite dispersion heterogeneity in the dyslexia cohort, but similar neurite density. These group differences were not present in the homologous contralateral area, the right vOT.Conclusions Our findings provide new insight into the neurobiology of the lack of vOT word tuning in dyslexia by linking behavior, alterations in functional activation, and neurite organization

    Auditory Verb Generation Performance Patterns Dissociate Variants of Primary Progressive Aphasia.

    Get PDF
    Primary progressive aphasia (PPA) is a clinical syndrome in which patients progressively lose speech and language abilities. Three variants are recognized: logopenic (lvPPA), associated with phonology and/or short-term verbal memory deficits accompanied by left temporo-parietal atrophy; semantic (svPPA), associated with semantic deficits and anterior temporal lobe (ATL) atrophy; non-fluent (nfvPPA) associated with grammar and/or speech-motor deficits and inferior frontal gyrus (IFG) atrophy. Here, we set out to investigate whether the three variants of PPA can be dissociated based on error patterns in a single language task. We recruited 21 lvPPA, 28 svPPA, and 24 nfvPPA patients, together with 31 healthy controls, and analyzed their performance on an auditory noun-to-verb generation task, which requires auditory analysis of the input, access to and selection of relevant lexical and semantic knowledge, as well as preparation and execution of speech. Task accuracy differed across the three variants and controls, with lvPPA and nfvPPA having the lowest and highest accuracy, respectively. Critically, machine learning analysis of the different error types yielded above-chance classification of patients into their corresponding group. An analysis of the error types revealed clear variant-specific effects: lvPPA patients produced the highest percentage of "not-a-verb" responses and the highest number of semantically related nouns (production of baseball instead of throw to noun ball); in contrast, svPPA patients produced the highest percentage of "unrelated verb" responses and the highest number of light verbs (production of take instead of throw to noun ball). Taken together, our findings indicate that error patterns in an auditory verb generation task are associated with the breakdown of different neurocognitive mechanisms across PPA variants. Specifically, they corroborate the link between temporo-parietal regions with lexical processing, as well as ATL with semantic processes. These findings illustrate how the analysis of pattern of responses can help PPA phenotyping and heighten diagnostic sensitivity, while providing insights on the neural correlates of different components of language
    corecore