15 research outputs found

    Source regions of infragravity waves recorded at the bottom of the equatorial Atlantic Ocean, using OBS of the PI‐LAB experiment

    Get PDF
    Infragravity waves are generated along coasts, and some small fraction of their energy escapes to the open oceans and propagates with little attenuation. Due to the scarcity of deep‐ocean observations of these waves, the mechanism and the extent of the infragravity waves energy leakage from the coasts remains poorly understood. Understanding the generation and pathways of infragravity wave energy is important among others for understanding the breakup of ice‐shelves and the contamination of high‐resolution satellite radar altimetry measurements of sea level. We examine data from 37 differential pressure gauges of Ocean Bottom Seismometers (OBS) near the equatorial mid‐Atlantic ridge, deployed during the Passive Imaging of the Lithosphere‐Asthenosphere Boundary (PI‐LAB) experiment. We use the beamforming technique to investigate the incoming directions of infragravity waves. Next, we develop a graph‐theory‐based global back‐projection method of noise cross‐correlation function envelopes, which minimizes the effects of array geometry using an adaptive weighting scheme. This approach allows us to locate the sources of the infragravity energy. We assess our observations by comparing to a global model of infragravity wave heights. Our results reveal strong coherent energy from sources and/or reflected phases at the west coast of Africa and some sources from South America. These energy sources are in good agreement with the global infragravity wave model. In addition, we also observe infragravity waves arriving from North America during specific events that mostly occur during October–February 2016. Finally, we find indications of waves that propagate with little attenuation, long distances through sea ice, reflecting off Antarctica

    Local seismicity around the Chain Transform Fault at the Mid-Atlantic Ridge from OBS observations

    Get PDF
    Summary Seismicity along transform faults provides important constraints for our understanding of the factors that control earthquake ruptures. Oceanic transform faults are particularly informative due to their relatively simple structure in comparison to their continental counterparts. The seismicity of several fast-moving transform faults has been investigated by local networks, but as of today there been few studies of transform faults in slow spreading ridges. Here we present the first local seismicity catalogue based on event data recorded by a temporary broadband network of 39 ocean bottom seismometers located around the slow-moving Chain Transform Fault (CTF) along the Mid-Atlantic Ridge (MAR) from March 2016 to March 2017. We locate 972 events in the area by simultaneously inverting for a 1-D velocity model informed by the event P- and S-arrival times. We refine the depths and focal mechanisms of the larger events using deviatoric moment tensor inversion. Most of the earthquakes are located along the CTF (700) and Romanche transform fault (94) and the MAR (155); a smaller number (23) can be observed on the continuing fracture zones or in intraplate locations. The ridge events are characterised by normal faulting and most of the transform events are characterised by strike slip faulting, but with several reverse mechanisms that are likely related to transpressional stresses in the region. CTF events range in magnitude from 1.1 to 5.6 with a magnitude of completeness around 2.3. Along the CTF we calculate a b-value of 0.81 ± 0.09. The event depths are mostly shallower than 15 km below sea level (523), but a small number of high-quality earthquakes (16) are located deeper, with some (8) located deeper than the brittle-ductile transition as predicted by the 600˚C-isotherm from a simple thermal model. The deeper events could be explained by the control of seawater infiltration on the brittle failure limit

    Towards the use of artificial intelligence deep learning networks for detection of archaeological sites

    No full text
    Funder: Daphne Jackson Trust; doi: https://doi.org/10.13039/501100000643Funder: National Environment Research CouncilAbstract While remote sensing data have long been widely used in archaeological prospection over large areas, the task of examining such data is time consuming and requires experienced and specialist analysts. However, recent technological advances in the field of artificial intelligence (AI), and in particular deep learning methods, open possibilities for the automated analysis of large areas of remote sensing data. This paper examines the applicability and potential of supervised deep learning methods for the detection and mapping of different kinds of archaeological sites comprising features such as walls and linear or curvilinear structures of different dimensions, spectral and geometrical properties. Our work deliberately uses open-source imagery to demonstrate the accessibility of these tools. One of the main challenges facing AI approaches has been that they require large amounts of labeled data to achieve high levels of accuracy so that the training stage requires significant computational resources. Our results show, however, that even with relatively limited amounts of data, simple eight-layer, fully convolutional network can be trained efficiently using minimal computational resources, to identify and classify archaeological sites and successfully distinguish them from features with similar characteristics. By increasing the number of training sets and switching to the use of high-performance computing the accuracy of the identified areas increases. We conclude by discussing the future directions and potential of such methods in archaeological research.</jats:p

    Lupus vulgaris - Identification of myobacterial DNA with polymerase chain reaction LUPUS VULGARIS - NACHWEIS MYKOBAKTERIELLER DNA MITTELS POLYMERASEKETTENREAKTION

    No full text
    During the last decades the prevalence of skin tuberculosis has decreased in the industrialized countries, due to the modern antitubercular drugs and the improvement of hygienic and social standards. Although lupus vulgaris, the most frequent form of skin tuberculosis in our regions, is rarely seen nowadays, it should always be considered in the differential diagnosis of chronic granulomatous skin lesions. The detection of Mycobacterium tuberculosis in histopathologic sections or even in culture media is difficult, and in immunocompetent patients negative results are frequent. We present two cases of lupus vulgaris in immunocompetent patients, showing the typical clinical features of plaque-type lupus vulgaris. Histopathology revealed epithelioid tubercles in the dermis, surrounded by a dense cuff of lymphocytes. Mycobacteria could neither be detected by special staining methods nor by culture. In both cases, however, the tuberculous nature of the lesions has been proven in formalin-fixed and paraffin-embedded specimen by identification of mycobacterial DNA with polymerase chain reaction

    Evolution of the Oceanic Lithosphere in the Equatorial Atlantic From Rayleigh Wave Tomography, Evidence for Small‐Scale Convection From the PI‐LAB Experiment

    No full text
    The oceanic lithosphere is a primary component of the plate tectonic system, yet its evolution and its asthenospheric interaction have rarely been quantified by in situ imaging at slow spreading systems. We use Rayleigh wave tomography from noise and teleseismic surface waves to image the shear wave velocity structure of the oceanic lithosphere‐asthenosphere system from 0 to 80 My at the equatorial Mid‐Atlantic Ridge using data from the Passive Imaging of the Lithosphere‐Asthenosphere Boundary (PI‐LAB) experiment. We observe fast lithosphere (VSV > 4.4 km/s) that thickens from 20–30 km near the ridge axis to ~70 km at seafloor >60 My. We observe several punctuated slow velocity anomalies (VSV 400 km from the ridge. We observe a high velocity lithospheric downwelling drip beneath 30 My seafloor that extends to 80–130 km depth. The asthenospheric slow velocities likely require partial melt. Although melt is present off axis, the lack of off‐axis volcanism suggests the lithosphere acts as a permeability boundary for deeper melts. The punctuated and off‐axis character of the asthenospheric anomalies and lithospheric drip suggests small‐scale convection is active at a range of seafloor ages. Small‐scale convection and/or more complex mantle flow may be aided by the presence of large offset fracture zones and/or the presence of melt and its associated low‐viscosities and enhanced buoyancies

    Source regions of infragravity waves recorded at the bottom of the equatorial Atlantic Ocean, using OBS of the PI‐LAB experiment

    No full text
    Infragravity waves are generated along coasts, and some small fraction of their energy escapes to the open oceans and propagates with little attenuation. Due to the scarcity of deep‐ocean observations of these waves, the mechanism and the extent of the infragravity waves energy leakage from the coasts remains poorly understood. Understanding the generation and pathways of infragravity wave energy is important among others for understanding the breakup of ice‐shelves, and the contamination of high‐resolution satellite radar altimetry measurements of sea level. We examine data from 37 differential pressure gauges of Ocean Bottom Seismometers (OBS) near the equatorial mid‐Atlantic ridge, deployed during the Passive Imaging of the Lithosphere‐Asthenosphere Boundary (PI‐LAB) experiment. We use the beamforming technique to investigate the incoming directions of infragravity waves. Next, we develop a graph‐theory‐based global back‐projection method of noise cross‐correlation function envelopes, which minimizes the effects of array geometry using an adaptive weighting scheme. This approach allows us to locate the sources of the infragravity energy. We assess our observations by comparing to a global model of infragravity wave heights. Our results reveal strong coherent energy from sources and/or reflected phases at the west coast of Africa and some sources from South America. These energy sources are in good agreement with the global infragravity wave model. In addition, we also observe infragravity waves arriving from North America during specific events that mostly occur during Oct‐Feb 2016. Finally, we find indications of waves that propagate with little attenuation, long distances through sea ice, reflecting off Antarctica

    Local seismicity around the Chain Transform Fault at the Mid-Atlantic Ridge from OBS observations

    No full text
    Seismicity along transform faults provides important constraints for our understanding of the factors that control earthquake ruptures. Oceanic transform faults are particularly informative due to their relatively simple structure in comparison to their continental counterparts. The seismicity of several fast-moving transform faults has been investigated by local networks, but as of today there been few studies of transform faults in slow spreading ridges. Here, we present the first local seismicity catalogue based on event data recorded by a temporary broad-band network of 39 ocean–bottom seismometers located around the slow-moving Chain Transform Fault (CTF) along the Mid-Atlantic Ridge (MAR) from 2016 to 2017 March. We locate 972 events in the area by simultaneously inverting for a 1-D velocity model informed by the event P- and S-arrival times. We refine the depths and focal mechanisms of the larger events using deviatoric moment tensor inversion. Most of the earthquakes are located along the CTF (700) and Romanche transform fault (94) and the MAR (155); a smaller number (23) can be observed on the continuing fracture zones or in intraplate locations. The ridge events are characterized by normal faulting and most of the transform events are characterized by strike-slip faulting, but with several reverse mechanisms that are likely related to transpressional stresses in the region. CTF events range in magnitude from 1.1 to 5.6 with a magnitude of completeness around 2.3. Along the CTF we calculate a b-value of 0.81 ± 0.09. The event depths are mostly shallower than 15 km below sea level (523), but a small number of high-quality earthquakes (16) are located deeper, with some (8) located deeper than the brittle-ductile transition as predicted by the 600 °C-isotherm from a simple thermal model. The deeper events could be explained by the control of sea water infiltration on the brittle failure limit

    Back-propagating super-shear rupture in the 2016 Mw7.1 Romanche transform fault earthquake

    No full text
    How an earthquake rupture propagates strongly influences potentially destructive ground shaking. Complex ruptures often involve slip along multiple faults, masking information on the frictional behaviour of fault zones. Geometrically smooth ocean transform fault plate boundaries offer a favourable environment to study fault dynamics, because strain is accommodated along a single, wide fault zone that offsets homogeneous geology. Here we present an analysis of the 2016 M7.1 earthquake on the Romanche fracture zone in the equatorial Atlantic, using data from both nearby seafloor seismometers and global seismic networks. We show that this rupture had two phases: (1) upward and eastward propagation towards a weaker region where the transform fault intersects the mid-ocean ridge, then (2) unusual back-propagation westwards at super-shear speed toward the centre of the fault. We suggest that deep rupture into weak fault segments facilitated greater seismic slip on shallow locked zones. This highlights that even earthquakes along a single distinct fault zone can be highly dynamic. Observations of back-propagating ruptures are sparse, and the possibility of reverse propagation is largely absent in rupture simulations and unaccounted for in hazard assessments
    corecore