1,329 research outputs found

    Metastable level properties of the excited configuration 4p64d84f4p^{6}4d^{8}4f

    Full text link
    Metastable levels in rhodium-like ions with the ground configuration 4p64d94p^{6}4d^{9} and the excited configurations 4p64d84f4p^{6}4d^{8}4f and 4p54d104p^{5}4d^{10} are investigated. The {\sl ab initio} calculations of the level energies, radiative multipole transition probabilities are performed in a quasirelativistic Hartree-Fock approximation employing an extensive configuration interaction based on quasirelativistic transformed radial orbitals. A systematic trends in behavior of calculated radiative lifetimes of the metastable levels are studied for the ions from Z=60Z=60 to Z=92Z=92. The significance of the radiative transitions of higher multipole order (M2M2 and E3E3) for the calculated radiative lifetimes is demonstrated and discussed.Comment: Lithuanian Journal of Physics (in press

    Methods, algorithms and computer codes for calculation of electron-impact excitation parameters

    Get PDF
    We describe the computer codes, developed at Vilnius University, for the calculation of electron-impact excitation cross sections, collision strengths, and excitation rates in the plane-wave Born approximation. These codes utilize the multireference atomic wavefunctions which are also adopted to calculate radiative transition parameters of complex many-electron ions. This leads to consistent data sets suitable in plasma modelling codes. Two versions of electron scattering codes are considered in the present work, both of them employing configuration interaction method for inclusion of correlation effects and Breit-Pauli approximation to account for relativistic effects. These versions differ only by one-electron radial orbitals, where the first one employs the non-relativistic numerical radial orbitals, while another version uses the quasirelativistic radial orbitals. The accuracy of produced results is assessed by comparing radiative transition and electron-impact excitation data for neutral hydrogen, helium and lithium atoms as well as highly-charged tungsten ions with theoretical and experimental data available from other sources.Comment: Lithuan. J. Physic

    Study of the correlation effects in Yb^+ and implications for parity violation

    Full text link
    Calculation of the energies, magnetic dipole hyperfine structure constants, E1 transition amplitudes between the low-lying states, and nuclear spin-dependent parity-nonconserving amplitudes for the ^2S_{1/2} - ^2D_{3/2,5/2} transitions in ^{171}Yb^+ ion is performed using two different approaches. First, we carried out many-body perturbation theory calculation considering Yb^+ as a monovalent system. Additional all-order calculations are carried out for selected properties. Second, we carried out configuration interaction calculation considering Yb as a 15-electron system and compared the results obtained by two methods. The accuracy of different methods is evaluated. We find that the monovalent description is inadequate for evaluation of some atomic properties due to significant mixing of the one-particle and the hole-two-particle configurations. Performing the calculation by such different approaches allowed us to establish the importance of various correlation effects for Yb^+ atomic properties for future improvement of theoretical precision in this complicated system.Comment: 11 pages;v2: minor changes and one reference adde

    Metal-insulator transition and glassy behavior in two-dimensional electron systems

    Full text link
    Studies of low-frequency resistance noise demonstrate that glassy freezing occurs in a two-dimensional electron system in silicon in the vicinity of the metal-insulator transition (MIT). The width of the metallic glass phase, which separates the 2D metal and the (glassy) insulator, depends strongly on disorder, becoming extremely small in high-mobility (low-disorder) samples. The glass transition is manifested by a sudden and dramatic slowing down of the electron dynamics, and by a very abrupt change to the sort of statistics characteristic of complicated multistate systems. In particular, the behavior of the second spectrum, an important fourth-order noise statistic, indicates the presence of long-range correlations between fluctuators in the glassy phase, consistent with the hierarchical picture of glassy dynamics.Comment: Contribution to conference on "Noise as a tool for studying materials" (SPIE), Santa Fe, New Mexico, June 2003; 15 pages, 12 figs. (includes some low-quality figs; send e-mail to get high-quality figs.

    Energy levels and radiative rates for transitions in Fe V, Co VI and Ni VII

    Full text link
    Energy levels, Land\'{e} gg-factors and radiative lifetimes are reported for the lowest 182 levels of the 3d4^4, 3d3^34s and 3d3^34p configurations of Fe~V, Co~VI and Ni~VII. Additionally, radiative rates (AA-values) have been calculated for the E1, E2 and M1 transitions among these levels. The calculations have been performed in a quasi-relativistic approach (QR) with a very large {\em configuration interaction} (CI) wavefunction expansion, which has been found to be necessary for these ions. Our calculated energies for all ions are in excellent agreement with the available measurements, for most levels. Discrepancies among various calculations for the radiative rates of E1 transitions in Fe~V are up to a factor of two for stronger transitions (f0.1f \geq 0.1), and larger (over an order of magnitude) for weaker ones. The reasons for these discrepancies have been discussed and mainly are due to the differing amount of CI and methodologies adopted. However, there are no appreciable discrepancies in similar data for M1 and E2 transitions, or the gg-factors for the levels of Fe~V, the only ion for which comparisons are feasible.Comment: This paper of 78 pages including 9 Tables will appear in ADNDT (2016

    Transition frequency shifts with fine-structure constant variation for Yb II

    Full text link
    In this paper we report calculations of the relativistic corrections to transition frequencies (q factors) of Yb II for the transitions from the odd-parity states to the metastable state 4f^{13}6s^2 ^2F_{7/2}^o. These transitions are of particular interest experimentally since they possess some of the largest q factors calculated to date and the 2F7/2o^2F_{7/2}^o state can be prepared with high efficiency. This makes Yb II a very attractive candidate for the laboratory search for variation of the fine-structure constant alpha.Comment: 5 page

    Atomic data for S II - Toward Better Diagnostics of Chemical Evolution in High-redshift Galaxies

    Get PDF
    Absorption-line spectroscopy is a powerful tool used to estimate element abundances in the nearby as well as distant universe. The accuracy of the abundances thus derived is, naturally, limited by the accuracy of the atomic data assumed for the spectral lines. We have recently started a project to perform the new extensive atomic data calculations used for optical/UV spectral lines in the plasma modeling code Cloudy using state-of-the-art quantal calculations. Here we demonstrate our approach by focussing on S II, an ion used to estimate metallicities for Milky Way interstellar clouds as well as distant damped Lyman-alpha (DLA) and sub-DLA absorber galaxies detected in the spectra of quasars and gamma-ray bursts (GRBs). We report new extensive calculations of a large number of energy levels of S II, and the line strengths of the resulting radiative transitions. Our calculations are based on the configuration interaction approach within a numerical Hartree-Fock framework, and utilize both non-ralativistic and quasirelativistic one-electron radial orbitals. The results of these new atomic calculations are then incorporated into Cloudy and applied to a lab plasma, and a typical DLA, for illustrative purposes. The new results imply relatively modest changes (~0.04 dex) to the metallicities estimated from S II in past studies. These results will be readily applicable to other studies of S II in the Milky Way and other galaxies.Comment: Accepted for publication in The Astrophysical Journal; 34 pages, 10 figure
    corecore