801 research outputs found
Plasma enhanced chemical vapor deposition of SiO_2 using novel alkoxysilane precursors
This communication describes our results using these novel alkoxysilane precursors for PECVD of SiO_2 films in an inductively coupled rf plasma reactor. The effects of deposition time, rf power, and organosilane pressure on the films’ characteristics are described
A modified molecular beam instrument for the imaging of radicals interacting with surfaces during plasma processing
A new instrument employing molecular beam techniques and laser induced fluorescence(LIF) for measuring the reactivity of gas phase radicals at the surface of a depositing film has been designed and characterized. The instrument uses an inductively coupled plasma source to create a molecular beam containing essentially all plasma species. A tunable excimer pumped dye laser is used to excite a single species in this complex molecular beam.LIF signals are imaged onto a gated, intensified charge coupled device (ICCD) to provide spatial resolution. ICCD images depict the fluorescence from molecules both in the molecular beam and scattering from the surface of a depositing film. Data collected with and without a substrate in the path of the molecular beam provide information about the surface reactivity of the species of interest. Here, we report the first measurements using the third generation imaging of radicals interacting with surfaces apparatus. We have measured the surface reactivity of SiH molecules formed in a 100% SiH_4 plasma during deposition of an amorphous hydrogenated silicon film. On a 300 K Si (100) substrate, the reactivity of SiH is near unity. The substrate temperature dependence (300–673 K) of the reactivity is also reported. In addition, reactivity measurements for OH molecules formed in a water plasma are presented. In contrast to the SiH molecule, the reactivity of OH radicals is 0.55±0.05 on the surface of a Si (100) substrate
Recommended from our members
Curie: Constraining Solar System Bombardment Using In Situ Radiometric Dating
The Curie mission would constrain the existence of the putative cataclysm by determining the age of samples directly sourced from the impact melt sheet of a major pre-Imbrium lunar basin. The measurements would also enable further understanding of lunar evolution by characterizing new lunar lithologies far from the Apollo and Luna landing sites, including the very low-Ti basalts in Mare Crisium and potential olivine rich lithologies in the margins of both Mare Nectaris and Mars Crisium. Equipped with a mass spectrometer and a LIBS, Curie would also be well-placed to survey volatile components of the lunar regolith, including surface-bound hydrogen
Pruning Algorithms for Pretropisms of Newton Polytopes
Pretropisms are candidates for the leading exponents of Puiseux series that
represent solutions of polynomial systems. To find pretropisms, we propose an
exact gift wrapping algorithm to prune the tree of edges of a tuple of Newton
polytopes. We prefer exact arithmetic not only because of the exact input and
the degrees of the output, but because of the often unpredictable growth of the
coordinates in the face normals, even for polytopes in generic position. We
provide experimental results with our preliminary implementation in Sage that
compare favorably with the pruning method that relies only on cone
intersections.Comment: exact, gift wrapping, Newton polytope, pretropism, tree pruning,
accepted for presentation at Computer Algebra in Scientific Computing, CASC
201
Two-Dimensional Helioseismic Power, Phase, and Coherence Spectra of {\it Solar Dynamics Observatory} Photospheric and Chromospheric Observables
While the {\it Helioseismic and Magnetic Imager} (HMI) onboard the {\it Solar
Dynamics Observatory} (SDO) provides Doppler velocity [], continuum
intensity [], and line-depth [] observations, each of which is
sensitive to the five-minute acoustic spectrum, the {\it Atmospheric Imaging
Array} (AIA) also observes at wavelengths -- specifically the 1600 and 1700
Angstrom bands -- that are partly formed in the upper photosphere and have good
sensitivity to acoustic modes. In this article we consider the characteristics
of the spatio--temporal Fourier spectra in AIA and HMI observables for a
15-degree region around NOAA Active Region 11072. We map the
spatio--temporal-power distribution for the different observables and the HMI
Line Core [], or Continuum minus Line Depth, and the phase and coherence
functions for selected observable pairs, as a function of position and
frequency. Five-minute oscillation power in all observables is suppressed in
the sunspot and also in plage areas. Above the acoustic cut-off frequency, the
behaviour is more complicated: power in HMI is still suppressed in the
presence of surface magnetic fields, while power in HMI and the AIA bands
is suppressed in areas of surface field but enhanced in an extended area around
the active region, and power in HMI is enhanced in a narrow zone around
strong-field concentrations and suppressed in a wider surrounding area. The
relative phase of the observables, and their cross-coherence functions, are
also altered around the active region. These effects may help us to understand
the interaction of waves and magnetic fields in the different layers of the
photosphere, and will need to be taken into account in multi-wavelength local
helioseismic analysis of active regions.Comment: 18 pages, 15 figures, to be published in Solar Physic
VFISV: Very Fast Inversion of the Stokes Vector for the Helioseismic and Magnetic Imager
In this paper we describe in detail the implementation and main properties of
a new inversion code for the polarized radiative transfer equation (VFISV: Very
Fast inversion of the Stokes vector). VFISV will routinely analyze pipeline
data from the Helioseismic and Magnetic Imager (HMI) on-board of the Solar
Dynamics Observatory (SDO). It will provide full-disk maps (40964096
pixels) of the magnetic field vector on the Solar Photosphere every 10 minutes.
For this reason VFISV is optimized to achieve an inversion speed that will
allow it to invert 16 million pixels every 10 minutes with a modest number
(approx. 50) of CPUs. Here we focus on describing a number of important
details, simplifications and tweaks that have allowed us to significantly speed
up the inversion process. We also give details on tests performed with data
from the spectropolarimeter on-board of the Hinode spacecraft.Comment: 23 pages, 9 figures (2 color). Submitted for publication to Solar
Physic
Local helioseismology of sunspot regions: comparison of ring-diagram and time-distance results
Local helioseismology provides unique information about the subsurface
structure and dynamics of sunspots and active regions. However, because of
complexity of sunspot regions local helioseismology diagnostics require careful
analysis of systematic uncertainties and physical interpretation of the
inversion results. We present new results of comparison of the ring-diagram
analysis and time-distance helioseismology for active region NOAA 9787, for
which a previous comparison showed significant differences in the subsurface
sound-speed structure, and discuss systematic uncertainties of the measurements
and inversions. Our results show that both the ring-diagram and time-distance
techniques give qualitatively similar results, revealing a characteristic
two-layer seismic sound-speed structure consistent with the results for other
active regions. However, a quantitative comparison of the inversion results is
not straightforward. It must take into account differences in the sensitivity,
spatial resolution and the averaging kernels. In particular, because of the
acoustic power suppression, the contribution of the sunspot seismic structure
to the ring-diagram signal can be substantially reduced. We show that taking
into account this effect reduces the difference in the depth of transition
between the negative and positive sound-speed variations inferred by these
methods. Further detailed analysis of the sensitivity, resolution and averaging
properties of the local helioseismology methods is necessary for consolidation
of the inversion results. It seems to be important that both methods indicate
that the seismic structure of sunspots is rather deep and extends to at least
20 Mm below the surface, putting constraints on theoretical models of sunspots.Comment: 10 pages, 10 figures, submitted to Journal of Physics: Conference
Series (JPCS) GONG 2010 - SoHO 24 "A new era of seismology of the Sun and
solar-like stars", June 27 - July 2, 2010 Aix-en-Provence, Franc
Formalization of Transform Methods using HOL Light
Transform methods, like Laplace and Fourier, are frequently used for
analyzing the dynamical behaviour of engineering and physical systems, based on
their transfer function, and frequency response or the solutions of their
corresponding differential equations. In this paper, we present an ongoing
project, which focuses on the higher-order logic formalization of transform
methods using HOL Light theorem prover. In particular, we present the
motivation of the formalization, which is followed by the related work. Next,
we present the task completed so far while highlighting some of the challenges
faced during the formalization. Finally, we present a roadmap to achieve our
objectives, the current status and the future goals for this project.Comment: 15 Pages, CICM 201
Active region formation through the negative effective magnetic pressure instability
The negative effective magnetic pressure instability operates on scales
encompassing many turbulent eddies and is here discussed in connection with the
formation of active regions near the surface layers of the Sun. This
instability is related to the negative contribution of turbulence to the mean
magnetic pressure that causes the formation of large-scale magnetic structures.
For an isothermal layer, direct numerical simulations and mean-field
simulations of this phenomenon are shown to agree in many details in that their
onset occurs at the same depth. This depth increases with increasing field
strength, such that the maximum growth rate of this instability is independent
of the field strength, provided the magnetic structures are fully contained
within the domain. A linear stability analysis is shown to support this
finding. The instability also leads to a redistribution of turbulent intensity
and gas pressure that could provide direct observational signatures.Comment: 19 pages, 10 figures, submitted to Solar Physic
- …