22 research outputs found

    Dehydroamino acids: chemical multi-tools for late-stage diversification

    Get PDF
    ι,β-Dehydroamino acids (dhAAs) are noncanonical amino acids that are found in a wide array of natural products and can be easily installed into peptides and proteins. dhAAs exhibit remarkable synthetic flexibility, readily undergoing a number of reactions, such as polar and single-electron additions, transition metal catalyzed cross-couplings, and cycloadditions. Because of the relatively mild conditions required for many of these reactions, dhAAs are increasingly being used as orthogonal chemical handles for late-stage modification of biomolecules. Still, only a fraction of the chemical reactivity of dhAAs has been exploited in such biorthogonal applications. Herein, we provide an overview of the broad spectrum of chemical reactivity of dhAAs, with special emphasis on recent efforts to adapt such transformations for biomolecules such as natural products, peptides, and proteins. We also discuss examples of enzymes from natural product biosynthetic pathways that have been found to catalyze many similar reactions; these enzymes provide mild, regio- and stereoselective, biocatalytic alternatives for future development. We anticipate that the continued investigation of the innate reactivity of dhAAs will furnish a diverse portfolio dhAA-based chemistries for use in chemical biology and drug discovery

    Thiopeptide Pyridine Synthase TbtD Catalyzes an Intermolecular Formal Aza-Diels-Alder Reaction

    Get PDF
    Thiopeptide pyridine synthases catalyze a multistep reaction involving a unique and nonspontaneous intramolecular aza-[4 + 2] cycloaddition between two dehydroalanines to forge a trisubstituted pyridine core. We discovered that the in vitro activity of pyridine synthases from the thiocillin and thiomuracin pathways are significantly enhanced by general base catalysis and that this broadly expands the enzymes substrate tolerance. Remarkably, TbtD is competent to perform an intermolecular cyclization in addition to its cognate intramolecular reaction, underscoring its versatility as a biocatalyst. These data provide evidence that pyridine synthases use a two-site substrate recognition model to engage and process their substrates

    Degenerations of ideal hyperbolic triangulations

    Full text link
    Let M be a cusped 3-manifold, and let T be an ideal triangulation of M. The deformation variety D(T), a subset of which parameterises (incomplete) hyperbolic structures obtained on M using T, is defined and compactified by adding certain projective classes of transversely measured singular codimension-one foliations of M. This leads to a combinatorial and geometric variant of well-known constructions by Culler, Morgan and Shalen concerning the character variety of a 3-manifold.Comment: 31 pages, 11 figures; minor changes; to appear in Mathematische Zeitschrif

    P450-Mediated Non-natural Cyclopropanation of Dehydroalanine-Containing Thiopeptides

    Get PDF
    Thiopeptides are a growing class of ribosomally synthesized and post-translationally modified peptide (RiPP) natural products. Many biosynthetic enzymes for RiPPs, especially thiopeptides, are promiscuous and can accept a wide range of peptide substrates with different amino acid sequences; thus, these enzymes have been used as tools to generate new natural product derivatives. Here, we explore an alternative route to molecular complexity by engineering thiopeptide tailoring enzymes to do new or non-native chemistry. We explore cytochrome P450 enzymes as biocatalysts for cyclopropanation of dehydroalanines, chemical motifs found widely in thiopeptides and other RiPP-based natural products. We find that P450TbtJ1 and P450TbtJ2 selectively cyclopropanate dehydroalanines in a number of complex thiopeptide-based substrates and convert them into 1-amino-2-cyclopropane carboxylic acids (ACCAs), which are important pharmacophores. This chemistry takes advantage of the innate affinity of these biosynthetic enzymes for their substrates and enables incorporation of new pharmacophores into thiopeptide architectures. This work also presents a strategy for diversification of natural products through rationally repurposing biosynthetic enzymes as non-natural biocatalysts

    Interception of the Bycroft-Gowland Intermediate in the Enzymatic Macrocyclization of Thiopeptides

    Get PDF
    Thiopeptides are a broad class of macrocyclic, heavily modified peptide natural products that are unified by the presence of a substituted, nitrogen-containing heterocycle core. Early work indicated that this core might be fashioned from two dehydroalanines by an enzyme-catalyzed aza-[4 + 2] cycloaddition to give a cyclic-hemiaminal intermediate. This common intermediate could then follow a reductive path toward a dehydropiperidine, as in the thiopeptide thiostrepton, or an aromatization path to yield the pyridine groups observed in many other thiopeptides. Although several of the enzymes proposed to perform this cycloaddition have been reconstituted, only pyridine products have been isolated and any hemiaminal intermediates have yet to be observed. Here, we identify the conditions and substrates that decouple the cycloaddition from subsequent steps and allow interception and characterization of this long hypothesized intermediate. Transition state modeling indicates that the key amide-iminol tautomerization is the major hurdle in an otherwise energetically favorable cycloaddition. An anionic model suggests that deprotonation and polarization of this amide bond by TbtD removes this barrier and provides a sufficient driving force for facile (stepwise) cycloaddition. This work provides evidence for a mechanistic link between disparate cyclases in thiopeptide biosynthesis

    Discovery and Characterization of Peptide Inhibitors for Calcium and Integrin Binding Protein 1

    Get PDF
    Calcium and integrin binding protein 1 (CIB1) is an EF-hand-containing, small intracellular protein that has recently been implicated in cancer cell survival and proliferation. In particular, CIB1 depletion significantly impairs tumor growth in triple-negative breast cancer (TNBC). Thus, CIB1 is a potentially attractive target for cancer chemotherapy that has yet to be validated by a chemical probe. To produce a probe molecule to the CIB1 helix 10 (H10) pocket and demonstrate that it is a viable target for molecular intervention, we employed random peptide phage display to screen and select CIB1-binding peptides. The top peptide sequence selected, UNC10245092, was produced synthetically, and binding to CIB1 was confirmed by isothermal titration calorimetry (ITC) and a time-resolved fluorescence resonance energy transfer (TR-FRET) assay. Both assays showed that the peptide bound to CIB1 with low nanomolar affinity. CIB1 was cocrystallized with UNC10245092, and the 2.1 Å resolution structure revealed that the peptide binds as an α-helix in the H10 pocket, displacing the CIB1 C-terminal H10 helix and causing conformational changes in H7 and H8. UNC10245092 was further derivatized with a C-terminal Tat-derived cell penetrating peptide (CPP) to demonstrate its effects on TNBC cells in culture, which are consistent with results of CIB1 depletion. These studies provide a first-in-class chemical tool for CIB1 inhibition in cell culture and validate the CIB1 H10 pocket for future probe and drug discovery efforts

    Track D Social Science, Human Rights and Political Science

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/138414/1/jia218442.pd

    Multi-centre prospective study on diagnosing subtypes of lung cancer by exhaled-breath analysis

    Get PDF
    Objectives: Lung cancer is a leading cause of mortality. Exhaled-breath analysis of volatile organic compounds (VOC's) might detect lung cancer early in the course of the disease, which may improve outcomes. Subtyping lung cancers could be helpful in further clinical decisions. Materials and methods: In a prospective, multi-centre study, using 10 electronic nose devices, 144 subjects diagnosed with NSCLC and 146 healthy subjects, including subjects considered negative for NSCLC after investigation, breathed into the Aeonose™ (The eNose Company, Zutphen, Netherlands). Also, analyses into subtypes of NSCLC, such as adenocarcinoma (AC) and squamous cell carcinoma (SCC), and analyses of patients with small cell lung cancer (SCLC) were performed. Results: Choosing a cut-off point to predominantly rule out cancer resulted for NSCLC in a sensitivity of 94.4%, a specificity of 32.9%, a positive predictive value of 58.1%, a negative predictive value (NPV) of 85.7%, and an area under the curve (AUC) of 0.76. For AC sensitivity, PPV, NPV, and AUC were 81.5%, 56.4%, 79.5%, and 0.74, respectively, while for SCC these numbers were 80.8%, 45.7%, 93.0%, and 0.77, respectively. SCLC could be ruled out with a sensitivity of 88.9% and an NPV of 96.8% with an AUC of 0.86. Conclusion: Electronic nose technology with the Aeonose™ can play an important role in rapidly excluding lung cancer due to the high negative predictive value for various, but not all types of lung cancer. Patients showing positive breath tests should still be subjected to further diagnostic testing
    corecore