168 research outputs found

    Phase-Controlled Force and Magnetization Oscillations in Superconducting Ballistic Nanowires

    Full text link
    The emergence of superconductivity-induced phase-controlled forces in the (0.01-0.1) nN range, and of magnetization oscillations, in nanowire junctions, is discussed. A giant magnetic response to applied weak magnetic fields, is predicted in the ballistic Josephson junction formed by a superconducting tip and a surface, bridged by a normal metal nanowire where Andreev states form.Comment: 5 pages, 3 figure

    Ballistic electronic transport in Quantum Cables

    Full text link
    We studied theoretically ballistic electronic transport in a proposed mesoscopic structure - Quantum Cable. Our results demonstrated that Qauntum Cable is a unique structure for the study of mesoscopic transport. As a function of Fermi energy, Ballistic conductance exhibits interesting stepwise features. Besides the steps of one or two quantum conductance units (2e2/h2e^2/h), conductance plateaus of more than two quantum conductance units can also be expected due to the accidental degeneracies (crossings) of subbands. As structure parameters is varied, conductance width displays oscillatory properties arising from the inhomogeneous variation of energy difference betweeen adjoining transverse subbands. In the weak coupling limits, conductance steps of height 2e2/h2e^2/h becomes the first and second plateaus for the Quantum Cable of two cylinder wires with the same width.Comment: 11 pages, 5 figure

    Three-dimensional oscillator in magnetic field: the de Haas-van Alphen effect in mesoscopic systems

    Full text link
    The theoretical investigation of the cluster de Haas - van Alphen (dHvA) oscillations in three-dimensional systems performed for the first time. Applying a three-dimensional oscillator model to systems with electron numbers 10<N10510< N \leq 10^5 we predict distinctive size effects: the dHvA oscillations can be observed only within a certain temperature range determined by NN; the lower size limit for NN is 20\approx 20; the amount of the dHvA oscillations is reduced with decreasing NN which is accompanied by stretching the period of the oscillations.Comment: 14 pages, 6 figure

    Aharonov-Bohm effect and plasma oscillations in superconducting tubes and rings

    Full text link
    Low frequency plasma oscillations in superconducting tubes are considered. The emergence of two different dimensionality regimes of plasma oscillations in tubes, exhibiting a crossover from one-dimensional to two-dimensional behavior, depending on whether kR1k R\ll 1 or kR1k R\gg 1, where kk is the plasmon wave vector and RR is the radius of the tube, is discussed. The Aharonov-Bohm effect pertaining to plasma oscillations in superconducting tubes and rings, resulting in an oscillatory behavior of the plasmon frequency as a function of the magnetic flux, with a flux quantum period hc/2ehc/2e (analog of the Little-Parks effect), is studied. The amplitude of the oscillations is proportional to (ξ/R)2(\xi/R)^2, where ξ\xi is the superconducting coherence length.Comment: 18 pages, 4 figure

    Energetics, forces, and quantized conductance in jellium modeled metallic nanowires

    Full text link
    Energetics and quantized conductance in jellium modeled nanowires are investigated using the local density functional based shell correction method, extending our previous study of uniform in shape wires [C. Yannouleas and U. Landman, J. Phys. Chem. B 101, 5780 (1997)] to wires containing a variable shaped constricted region. The energetics of the wire (sodium) as a function of the length of the volume conserving, adiabatically shaped constriction leads to formation of self selecting magic wire configurations. The variations in the energy result in oscillations in the force required to elongate the wire and are directly correlated with the stepwise variations of the conductance of the nanowire in units of 2e^2/h. The oscillatory patterns in the energetics and forces, and the correlated stepwise variation in the conductance are shown, numerically and through a semiclassical analysis, to be dominated by the quantized spectrum of the transverse states at the narrowmost part of the constriction in the wire.Comment: Latex/Revtex, 11 pages with 5 Postscript figure

    Coherent quantum phenomena in mesoscopic metallic conductors (Review Article)

    Get PDF
    The quantum coherent phenomena in mesoscopic cylindrical metallic conductors have been considered. Pure double-and single-connected normal samples were placed in a longitudinal magnetic field, which generated interference phenomena depending on the magnetic flux through the cross-section of the conductor. The period of the induced oscillations is equal to the flux quantum hc/e of the normal metal. The quantum states are formed in the structures by collisions of the electrons with the dielectric boundary of the sample. The magnetic flux is included in the expression for the spectrum of quasiparticles. The proximity effect and its influence on the modification of the spectrum of quantum coherent phenomena have been investigated. The behavior of cylindrical samples consisting of a superconducting (S) metal with a deposited thin pure normal (N) metal layer has been analyzed. In this structure the electrons are localized in a well bounded by a dielectric on one side and by a superconductor on the other. The specific feature of the generated quantized Andreev levels is that in the varying field H (or temperature T) each of the levels in the well can coincide periodically with the chemical potential of the metal. As a result, the state of the system experiences strong degeneracy and the density of states exhibits resonance spikes of the energy of the NS sample. This makes a significant contribution to the magnetic moment. A theory of the reentrant effect for NS structures has been developed, which interprets the anomalous behavior of the magnetic susceptibility of such structures as a function of the magnetic field and temperatures

    Berry's Phases of Ground States of Interacting Spin-One Bosons: Chains of Monopoles and Monosegments

    Full text link
    We study Berry's connection potentials of many-body ground states of spin-one bosons with antiferromagnetic interactions in adiabatically varying magnetic fields. We find that Berry's connection potentials are generally determined by, instead of usual singular monopoles, linearly positioned monosegments each of which carries one unit of topological charge; in the absence of a magnetic field gradient this distribution of monosegments becomes a linear chain of monopoles. Consequently, Berry's phases consist of a series of step functions of magnetic fields; a magnetic field gradient causes rounding of these step-functions. We also calculate Berry's connection fields, profiles of monosegments and show that the total topological charge is conserved in a parameter space

    Persistent currents, flux quantization, and magnetomotive forces in normal metals and superconductors (Review Article)

    Get PDF
    The notion of persistent current comes back to orbital currents in normal metals, semiconductors and even insulators displaying diamagnetic behavior in weak magnetic fields, but came to focus at the discovery of current persistence and magnetic flux quantization at large fields in atomically big but macroscopically small (mesoscopic) objects. The phenomenon bears much similarity with supercurrents in superconductive metals. We will review progress in developing of our understanding of the physical and technological aspects of this phenomenon. The exact solution for currents, magnetic moments and magnetomotive forces (torques) in crossed magnetic fields are presented. Time-dependent phenomena in crossed magnetic and electric fields, and in possibility of spontaneous persistent currents and of work extraction from static and dynamic quantum states are discussed

    Edge effects in graphene nanostructures: I. From multiple reflection expansion to density of states

    Get PDF
    We study the influence of different edge types on the electronic density of states of graphene nanostructures. To this end we develop an exact expansion for the single particle Green's function of ballistic graphene structures in terms of multiple reflections from the system boundary, that allows for a natural treatment of edge effects. We first apply this formalism to calculate the average density of states of graphene billiards. While the leading term in the corresponding Weyl expansion is proportional to the billiard area, we find that the contribution that usually scales with the total length of the system boundary differs significantly from what one finds in semiconductor-based, Schr\"odinger type billiards: The latter term vanishes for armchair and infinite mass edges and is proportional to the zigzag edge length, highlighting the prominent role of zigzag edges in graphene. We then compute analytical expressions for the density of states oscillations and energy levels within a trajectory based semiclassical approach. We derive a Dirac version of Gutzwiller's trace formula for classically chaotic graphene billiards and further obtain semiclassical trace formulae for the density of states oscillations in regular graphene cavities. We find that edge dependent interference of pseudospins in graphene crucially affects the quantum spectrum.Comment: to be published in Phys. Rev.

    Calorimetric tunneling study of heat generation in metal-vacuum-metal tunnel junction

    Full text link
    We have proposed novel calorimetric tunneling (CT) experiment allowing exact determination of heat generation (or heat sinking) in individual tunnel junction (TJ) electrodes which opens new possibilities in the field of design and development of experimental techniques for science and technology. Using such experiment we have studied the process of heat generation in normal-metal electrodes of the vacuum-barrier tunnel junction (VBTJ). The results show there exists dependence of the mutual redistribution of the heat on applied bias voltage and the direction of tunnel current, although the total heat generated in tunnel process is equal to Joule heat, as expected. Moreover, presented study indicates generated heat represents the energy of non-equilibrium quasiparticles coming from inelastic electron processes accompanying the process of elastic tunneling.Comment: 8 pages, 3 figures, LaTe
    corecore