255 research outputs found

    An educational experience in ancient Rome to evaluate the impact of virtual reality on human learning processes

    Get PDF
    Immersive Virtual Reality technology has recently gained significant attention and is expanding its applications to various fields. It also has many advantages in education, as it allows to both simplify the explanation of complex topics through their visualization, and explore lost or unreachable environments. To evaluate the impact of immersive experiences on learning outcomes we developed an educational experience that lets users visit an ancient Roman Domus and provides information about daily life in Roman times. We designed a between-subjects data collection to investigate learning ratio, user experience, and cybersickness of participants through anonymous questionnaires. We collected 76 responses of participants (18–35 y.o.) divided into three conditions: a Immersive Virtual Reality experience, a slide-based lecture and a 2D desktop-based experience. Our results show that the virtual reality experience is considered more engaging and as effective as more traditional 2D and slide-based experiences in terms of learning

    Hydroxide Rather Than Histidine Is Coordinated to the Heme in Five-coordinate Ferric Scapharca inaequivalvisHemoglobin

    Get PDF
    The ferric form of the homodimeric Scapharca hemoglobin undergoes a pH-dependent spin transition of the heme iron. The transition can also be modulated by the presence of salt. From our earlier studies it was shown that three distinct species are populated in the pH range 6-9. At acidic pH, a low-spin six-coordinate structure predominates. At neutral and at alkaline pHs, in addition to a small population of a hexacoordinate high-spin species, a pentacoordinate species is significantly populated. Isotope difference spectra clearly show that the heme group in the latter species has a hydroxide ligand and thereby is not coordinated by the proximal histidine. The stretching frequency of the Fe-OH moiety is 578 cm-1 and shifts to 553 cm-1 in H218O, as would be expected for a Fe-OH unit. On the other hand, the ferrous form of the protein shows substantial stability over a wide pH range. These observations suggest that Scapharca hemoglobin has a unique heme structure that undergoes substantial redox-dependent rearrangements that stabilize the Fe-proximal histidine bond in the functional deoxy form of the protein but not in the ferric form

    Oxidized dimeric Scapharca inaequivalvis. Co-driven perturbation of the redox equilibrium.

    Get PDF
    The dimeric hemoglobin isolated from Scapharca inaequivalvis, HbI, is notable for its highly cooperative oxygen binding and for the unusual proximity of its heme groups. We now report that the oxidized protein, an equilibrium mixture of a dimeric high spin aquomet form and a monomeric low spin hemichrome, binds ferrocyanide tightly which allows for internal electron transfer with the heme iron. Surprisingly, when ferricyanide-oxidized HbI is exposed to CO, its spectrum shifts to that of the ferrous CO derivative. Gasometric removal of CO leads to the oxidized species rather than to ferrous deoxy-HbI. At equilibrium, CO binds with an apparent affinity (p50) of about 10-25 mm of Hg and no cooperativity (20 degrees C, 10-50 mM buffers at pH 6.1). The kinetics of CO binding under pseudo-first order conditions are biphasic (t1/2 of 15-50 s at pH 6.1). The rates depend on protein, but not on CO concentration. The nitrite-oxidized protein is not reduced readily in the presence of CO unless one equivalent of ferrocyanide, but not of ferricyanide, is added. We infer that ferrocyanide, produced in the oxidation reaction, is tightly bound to the protein forming a redox couple with the heme iron. CO shifts the redox equilibrium by acting as a trap for the reduced heme. The equilibrium and kinetic aspects of the process have been accounted for in a reaction scheme where the internal electron transfer reaction is the rate-limiting step

    Radio-over-modes for C-RAN architecture with smart optical resources assignment

    Get PDF
    In this paper we consider a centralized radio access network (C-RAN) architecture with a fully analog fronthaul link between remote radio heads (RRHs) and baseband units (BBUs) based on the radio over fiber (RoF) paradigm. Mode division multiplexing (MDM) and frequency division multiplexing (FDM) are employed to provide an additional multiplexing signal dimension to meet the huge bandwidth requirements of next generation (5G) wireless mobile systems. The main contribution of the paper is to prove that a smart resource assignment between the radio antennas and the mode/frequency dimensions allows the communication over the RRH-BBU link at rates that are comparable to those achieved by an ideal fronthauling where BBU and RRH are assumed to be co-located, even without any complex and costly optical equalization technique. Validation is on the radio-link capabilities employing multiple antennas to meet the demand for massive MIMO technology

    Coordination and spin state equilibria as a function of pH, ionic strength, and protein concentration in oxidized dimeric Scapharca inaequivalvis hemoglobin.

    Get PDF
    The oxidized homodimeric Scapharca inaequivalvis hemoglobin undergoes changes in coordination and spin state as a function of pH, ionic strength, and protein concentration which have been monitored by optical absorption spectroscopy. Three species contribute to the spectra between pH 5.8 and 8.7: (i) a hexacoordinate high spin aquomet derivative, whose concentration is essentially constant over the whole pH range analyzed; (ii) a pentacoordinate high spin component which prevails at alkaline pH values, and (iii) a hexacoordinate low spin hemichrome, which is formed at acid pH. The contribution of each of the components to the observed spectra was calculated with the singular value decomposition procedure and has been described quantitatively in terms of a linkage scheme which accounts for the change in heme coordination and for the observation that the high spin to low spin transition entails dissociation into monomers. An important feature of the linkage scheme is the cooperative binding of protons to aquomet dimers. Stopped flow experiments to study the kinetics indicate that dissociation into monomers is the rate-limiting process. The unusually strong tendency of oxidized HbI to loose the heme-bound water molecule is discussed in terms of strain in the iron-proximal histidine bond

    Long Wavelength VCSELs Exploitation for Low-Cost and Low-Power Consumption Metro and Access Networks

    Get PDF
    Long wavelength VCSELs are demonstrated to be able to support metro and access networks in order to achieve low-cost and low-power consumption transceivers. In particular, the exploitation of discrete multitone (DMT) direct modulation allows to achieve high transmission capacities and the availability of widely tuneable MEMS-VCSELs to sustain agility, reconfigurability and colourless features of networks

    Hagfish Hemoglobins STRUCTURE, FUNCTION, AND OXYGEN-LINKED ASSOCIATION

    Get PDF
    Cyclostomes, hagfishes and lampreys, contain hemoglobins that are monomeric when oxygenated and polymerize to dimers or tetramers when deoxygenated. The three major hemoglobin components (HbI, HbII, and HbIII) from the hagfish Myxine glutinosa have been characterized and compared with lamprey Petromyzon marinus HbV, whose x-ray crystal structure has been solved in the deoxygenated, dimeric state (Heaslet, H. A., and Royer, W. E., Jr. (1999) Structure 7, 517-526). Of these three, HbII bears the highest sequence similarity to P. marinus HbV. In HbI and HbIII the distal histidine is substituted by a glutamine residue and additional substitutions occur in residues located at the deoxy dimer interface of P. marinus HbV. Infrared spectroscopy of the CO derivatives, used to probe the distal pocket fine structure, brings out a correlation between the CO stretching frequencies and the rates of CO combination. Ultracentrifugation studies show that HbI and HbIII are monomeric in both the oxygenated and deoxygenated states under all conditions studied, whereas deoxy HbII forms dimers at acidic pH values, like P. marinus HbV. Accordingly, the oxygen affinities of HbI and HbIII are independent of pH, whereas HbII displays a Bohr effect below pH 7.2. HbII also forms heterodimers with HbIII and heterotetramers with HbI. The functional counterparts of heteropolymer formation are cooperativity in oxygen binding and the oxygen-linked binding of protons and bicarbonate. The observed effects are explained on the basis of the x-ray structure of P. marinus HbV and the association behavior of site-specific mutants (Qiu, Y., Maillett, D. H., Knapp, J., Olson, J. S., and Riggs, A. F. (2000) J. Biol. Chem. 275, 13517-13528)

    Beyond 25 Gb/s Directly-Modulated Widely Tunable VCSEL for Next Generation Access Network

    Get PDF
    We demonstrate capacities beyond 25Gb/s up to 40 km in the whole C-band range without any dispersion compensation by DMT direct modulation and direct detection exploiting widely tuneable MEMS-VCSELs for future low-cost high-capacity access networks

    Structural characterization of oxidized dimeric Scapharca inaequivalvis hemoglobin by resonance Raman spectroscopy.

    Get PDF
    Resonance Raman spectra of the ferric homodimeric hemoglobin from Scapharca inaequivalvis have been measured over the pH range 5.8-8.3 in buffers of ionic strengths 0.01 and 0.1 M to determine the spin and coordination state of the iron atom. Three species contribute to the spectra: a low spin hexacoordinate, a high spin pentacoordinate, and a high spin hexacoordinate component. Optical absorption and EPR spectra measured under the same conditions allowed the identification of the ligands in the sixth coordination position, namely the distal histidine in the low spin derivative and a water molecule in the high spin one. The relative concentrations of these three species depend on pH in an unusual way. Thus, the aquomet derivative is present over the whole pH range, albeit in small amounts as most of the hemoglobin converts to the low spin hemichrome at acid pH values and to the pentacoordinate derivative at neutral and slightly alkaline ones. The formation of a pentacoordinate heme as the pH is increased has not been reported previously for other myoglobins and hemoglobins. Low ionic strength and high protein concentration favor the formation of the high spin pentacoordinate species, while at high ionic strength and low protein concentration the low spin hexacoordinate species prevails. Ionization of the iron-bound water molecule occurs at pH > or = 9.3; accordingly, signals from the hydroxyl derivative were not observed in the Raman spectra over the pH range studied
    • …
    corecore