1,181 research outputs found
Preferences for Collective versus Individualised Wage Setting
Standard models of equilibrium unemployment assume exogenous labour market institutions and flexible wage determination. This paper models wage rigidity and collective bargaining endogenously, when workers differ by observable skill and may adopt either individualized or collective wage bargaining. In the calibrated model, a substantial fraction of workers and firms as well as the median voter prefer collective bargaining to the decentralised regime. A fundamental distortion of the separation decision represented by employment protection (a firing tax) is necessary for such preferences to emerge. Endogenizing collective bargaining can significantly modify comparative statics effects of policy arising in a single-regime setting.wage rigidity, employment protection, equilibrium unemployment
Linear response separation of a solid into atomic constituents: Li, Al, and their evolution under pressure
We present the first realization of the generalized pseudoatom concept
introduced by Ball, and adopt the name enatom to minimize confusion. This
enatom, which consists of a unique decomposition of the total charge density
(or potential) of any solid into a sum of overlapping atomiclike contributions
that move rigidly with the nuclei to first order, is calculated using
(numerical) linear response methods, and is analyzed for both fcc Li and Al at
pressures of 0, 35, and 50 GPa. These two simple fcc metals (Li is fcc and a
good superconductor in the 20-40 GPa range) show different physical behaviors
under pressure, which reflects the increasing covalency in Li and the lack of
it in Al. The nonrigid (deformation) parts of the enatom charge and potential
have opposite signs in Li and Al; they become larger under pressure only in Li.
These results establish a method of construction of the enatom, whose potential
can be used to obtain a real-space understanding of the vibrational properties
and electron-phonon interaction in solids.Comment: 13 pages, 9 figures, 1 table, V2: fixed problem with Fig. 7, V3:
minor correction
Preferences for Rigid versus Individualized Wage Setting in Search Economies with Frictions
Firing frictions and renegotiation costs affect worker and firm preferences for rigid wages
versus individualized Nash bargaining in a standard model of equilibrium unemployment, in
which workers vary by observable skill. Rigid wages permit savings on renegotiation costs
and prevent workers from exploiting the firing friction. For standard calibrations, the model
can account for political support for wage rigidity by both workers and firms, especially in
labor markets for intermediate skills. The firing friction is necessary for this effect, and
reinforces the impact of both turbulence and other labor market institutions on preferences for
rigid wages
Functional renormalization group study of an eight-band model for the iron arsenides
We investigate the superconducting pairing instabilities of eight-band models
for the iron arsenides. Using a functional renormalization group treatment, we
determine how the critical energy scale for superconductivity depends on the
electronic band structure. Most importantly, if we vary the parameters from
values corresponding to LaFeAsO to SmFeAsO, the pairing scale is strongly
enhanced, in accordance with the experimental observation. We analyze the
reasons for this trend and compare the results of the eight-band approach to
those found using five-band models.Comment: 11 pages, 10 figure
Electron-phonon interaction in Graphite Intercalation Compounds
Motivated by the recent discovery of superconductivity in Ca- and
Yb-intercalated graphite (CaC and YbC) and from the ongoing debate
on the nature and role of the interlayer state in this class of compounds, in
this work we critically study the electron-phonon properties of a simple model
based on primitive graphite. We show that this model captures an essential
feature of the electron-phonon properties of the Graphite Intercalation
Compounds (GICs), namely, the existence of a strong dormant electron-phonon
interaction between interlayer and electrons, for which we
provide a simple geometrical explanation in terms of NMTO Wannier-like
functions. Our findings correct the oversimplified view that
nearly-free-electron states cannot interact with the surrounding lattice, and
explain the empirical correlation between the filling of the interlayer band
and the occurrence of superconductivity in Graphite-Intercalation Compounds.Comment: 13 pages, 12 figures, submitted to Phys. Rev.
Three-dimensional MgB-type superconductivity in hole-doped diamond
We substantiate by calculations that the recently discovered
superconductivity below 4 K in 3% boron-doped diamond is caused by
electron-phonon coupling of the same type as in MgB, albeit in 3
dimensions. Holes at the top of the zone-centered, degenerate -bonding
valence band couple strongly to the optical bond-stretching modes. The increase
from 2 to 3 dimensions reduces the mode-softening crucial for reaching
40 K in MgB Even if diamond had the same \emph{bare} coupling constant
as MgB which could be achieved with 10% doping, would only be 25
K. Superconductivity above 1 K in Si (Ge) requires hole-doping beyond 5% (10%).Comment: revised version, accepted by PR
ICTs for Accessing, Understanding and Safeguarding Cultural Heritage: The Experience of INCEPTION and ROCK H2020 Projects
Today digital technologies offer great opportunities in the field of Cultural Heritage (CH). After a general overview of the European policy documents on CH digitisation, the paper aims to reflect on tools, procedures and methodologies in the use of Information and Communication Technologies (ICTs) as a new way of visualization, application and data collection towards accessing, understanding and safeguarding our historic built environment. The focus will be on two ongoing H2020 projects, INCEPTION and ROCK, selected to address the problem of CH digitisation and the access to the corresponding digitized resources in relation to historic buildings and urban districts. Therefore, they are presented as inspiring good practices for tackling this issue considering its impacts both at the architectural and urban scale. Stressing the potentials of enabling technologies, such as 3D laser surveys, environment and climate sensors, large crowd monitoring tools and CH analytic, they are also able to orient future research beyond 2020
Vibrational spectrum of solid picene (C_22H_14)
Recently, Mitsuhashi et al., have observed superconductivity with transition
temperature up to 18 K in potassium doped picene (C22H14), a polycyclic
aromatic hydrocarbon compound [Nature 464 (2010) 76]. Theoretical analysis
indicate the importance of electron-phonon coupling in the superconducting
mechanisms of these systems, with different emphasis on inter- and
intra-molecular vibrations, depending on the approximations used. Here we
present a combined experimental and ab-initio study of the Raman and infrared
spectrum of undoped solid picene, which allows us to unanbiguously assign the
vibrational modes. This combined study enables the identification of the modes
which couple strongly to electrons and hence can play an important role in the
superconducting properties of the doped samples
Phonon softening and dispersion in the 1D Holstein model of spinless fermions
We investigate the effect of electron-phonon interaction on the phononic
properties in the one-dimensional half-filled Holstein model of spinless
fermions. By means of determinantal Quantum Monte Carlo simulation we show that
the behavior of the phonon dynamics gives a clear signal of the transition to a
charge-ordered phase, and the phase diagram obtained in this way is in
excellent agreement with previous DMRG results. By analyzing the phonon
propagator we extract the renormalized phonon frequency, and study how it first
softens as the transition is approached and then subsequently hardens in the
charge-ordered phase. We then show how anharmonic features develop in the
phonon propagator, and how the interaction induces a sizable dispersion of the
dressed phonon in the non-adiabatic regime.Comment: 7 pages, 6 figure
- …