689 research outputs found

    Structure of the ATP-Synthase from Chloroplasts and Mitochondria Studied by Electron Microscopy

    Get PDF
    The structure of the ATP-synthase, F0F1 , from spinach chloroplasts and beef heart mitochondria has been investigated by electron microscopy with negatively stained specimens. The detergent-solubilized ATP-synthase forms string-like structures in which the F0 parts are aggregated. In most cases, the F, parts are arranged at alternating sides along the string. The F0 part has an approximate cylindrical shape with heights of 8.3 and 8.9 nm and diameters of 6.2 and 6.4 nm for the chloroplast and mitochondrial enzyme, respectively. The F, parts are disk-like structures with a diameter of about 11.5 nm and a height of about 8.5 nm. The F, parts are attached to the strings, composed of Fn parts, in most cases, with their smallest dimension parallel to the strings. The stalk connecting F0 and F, has a length of 3.7 nm and 4.3 nm and a diameter of 2.7 nm and 4.3 nm for the chloroplast and mitochondrial enzyme, respectively

    Plants lacking the main light-harvesting complex retain photosystem II macro-organization

    Get PDF
    Photosystem II (PSII) is a key component of photosynthesis, the process of converting sunlight into the chemical energy of life. In plant cells, it forms a unique oligomeric macrostructure in membranes of the chloroplasts. Several light-harvesting antenna complexes are organized precisely in the PSII macrostructure—the major trimeric complexes (LHCII) that bind 70% of PSII chlorophyll and three minor monomeric complexes—which together form PSII supercomplexes. The antenna complexes are essential for collecting sunlight and regulating photosynthesis, but the relationship between these functions and their molecular architecture is unresolved. Here we report that antisense Arabidopsis plants lacking the proteins that form LHCII trimers have PSII supercomplexes with almost identical abundance and structure to those found in wild-type plants. The place of LHCII is taken by a normally minor and monomeric complex, CP26, which is synthesized in large amounts and organized into trimers. Trimerization is clearly not a specific attribute of LHCII. Our results highlight the importance of the PSII macrostructure: in the absence of one of its main components, another protein is recruited to allow it to assemble and function

    How many laypeople holding a popular opinion are needed to counter an expert opinion?

    Get PDF
    In everyday situations, people regularly receive information from large groups of (lay) people and from single experts. Although lay opinions and expert opinions have been studied extensively in isolation, the present study examined the relationship between the two by asking how many laypeople are needed to counter an expert opinion. A Bayesian formalisation allowed the prescription of this quantity. Participants were subsequently asked to assess how many laypeople are needed in different situations. The results demonstrate that people are sensitive to the relevant factors identified for determining how many lay opinions are required to counteract a single expert opinion. People's assessments were fairly good in line with Bayesian predictions

    Supramolecular Structure of the Mitochondrial Oxidative Phosphorylation System

    Get PDF
    The protein complexes of the mitochondrial oxidative phosphorylation system were recently reported to form supramolecular assemblies termed respiratory supercomplexes or respirasomes. These supercomplexes are considered to be of great functional importance. Here we review new insights into supercomplex structure and physiology

    Structure and membrane organization of photosystem II in green plants

    Get PDF
    Photosystem II (PSII) is the pigment protein complex embedded in the thylakoid membrane of higher plants, algae, and cyanobacteria that uses solar energy to drive the photosynthetic water-splitting reaction. This chapter reviews the primary, secondary, tertiary, and quaternary structures of PSII as well as the function of its constituent subunits. The understanding of in vivo organization of PSII is based in part on freeze-etched and freeze-fracture images of thylakoid membranes. These images show a resolution of about 40-50 Angstrom and so provide information mainly on the localization heterogeneity, dimensions, and shapes of membrane-embedded PSII complexes. Higher resolution of about 15-40 Angstrom has been obtained from single particle images of isolated PSII complexes of defined and differing subunit composition and from electron crystallography of 2-D crystals. Observations are discussed in terms of the oligomeric state and subunit organization of PSII and its antenna components.</p
    • …
    corecore