7 research outputs found

    Retinal Colocalization and In Vitro Interaction of the Glutamate Receptor EAAT3 and the Serum- and Glucocorticoid-Inducible Kinase SGK1

    No full text
    PURPOSE. The serum- and glucocorticoid-inducible kinase SGK1 regulates several epithelial channels and transporters, the related protein kinase B (PKB) regulates glucose transport. SGK1 is expressed in the brain and could thus regulate glial and/or neuronal transport processes. The present study explores whether SGK1 is expressed in the retina and whether it regulates EAAT3, a Na+-coupled glutamate transporter. EAAT3 is expressed in retinal ganglion cells and accomplishes the clearance of glutamate from synaptic clefts. METHODS. Immunohistochemistry was performed to test for retinal SGK1 expression. For functional analysis, cRNA encoding EAAT3 was injected into Xenopus oocytes with or without additional injection of wild-type SGK1, constitutively active S422DSGK1, inactive K127NSGK1, and/or constitutively active T308D,S473DPKB. Glutamate induced current (IGLU) was taken as a measure for transport. RESULTS. SGK1 is indeed expressed in several retinal cells including retinal ganglion cells where it is colocalized with EAAT3. In EAAT3-expressing Xenopus oocytes, glutamate-induced current was stimulated by coexpression of wild-type SGK1, constitutively active S422DSGK1, and constitutively active T308D,S473DPKB, but not by inactive K127NSGK1. CONCLUSIONS. SGK1 and EAAT3 are coexpressed in retinal neurons, and SGK1 serves to stimulate EAAT3. This function is shared by protein kinase B (PKB). The experiments reveal a novel mechanism regulating EAAT3, which may be essential for the function of the retinal ganglion cells

    NY-ESO-1-specific immunological pressure and escape in a patient with metastatic melanoma

    Full text link
    During cancer progression, malignant cells may evade immunosurveillance. However, evidence for immunological escape in humans is scarce. We report here the clinical course of a melanoma patient whose initial tumor was positive for the antigens NY-ESO-1, MAGE-C1, and Melan-A. Upon immunization with a recombinant vaccinia/fowlpox NY-ESO-1 construct, the patient experienced a mixed clinical response and spreading of the NY-ESO-1 epitopes in the CD4+ T cell compartment. After NY-ESO-1 protein + CpG immunization, the patient's anti-NY-ESO-1 IgG response increased. Over the following years, progressing lesions were resected and found to be NY-ESO-1-negative while being positive for MAGE-C1, Melan-A, and MHC-I. The fatal, inoperable brain metastasis was analyzed after his death and also proved to be NY-ESO-1-negative, while being positive for MAGE-C1 and Melan-A, as well as MHC-I. We propose that cancer control and cancer escape in this patient were governed by NY-ESO-1-specific immunological pressure. Our findings provide evidence for the existence of immunoediting and immunoescape in this cancer patient

    Efficient in vivo priming by vaccination with recombinant NY-ESO-1 protein and CpG in antigen naive prostate cancer patients

    Full text link
    PURPOSE: NY-ESO-1, one of the most immunogenic tumor antigens, is expressed in 15% to 25% of metastatic prostate cancers. The immunological and clinical effects of vaccination with recombinant NY-ESO-1 protein combined with CpG as adjuvant were evaluated. EXPERIMENTAL DESIGN: In a phase I clinical study, patients with advanced prostate cancer were vaccinated with recombinant NY-ESO-1 protein (100 μg) mixed with CpG 7909 (2.5 mg) every 3 weeks intradermally for 4 doses. Objectives of the study were the safety of the vaccine and changes of specific humoral and cellular immunological responses to NY-ESO-1 in relation to detectable NY-ESO-1 expression in the individual tumor. RESULTS: All 12 baseline sero-negative patients developed high-titer NY-ESO-1 antibody responses. B-cell epitope mapping identified NY-ESO-1 p91-110 to be recognized most frequently by vaccine-induced antibodies. Two patients developed significant antibody titers against the adjuvant CpG. NY-ESO-1-specific CD4+ and/or CD8+ T-cell responses were induced in 9 patients (69%). Five of these 9 patients did not express NY-ESO-1 in the autologous tumor. Postvaccine CD8+ T-cell clones recognized and lyzed HLA-matched tumor cell lines in an antigen-specific manner. CONCLUSION: Our data provide clear evidence for the capacity of NY-ESO-1 protein/CpG vaccine to induce integrated antigen-specific immune responses in vivo and to efficiently prime CD8+ T-cell responses in NY-ESO-1 antigen-negative patients. Our results may also support further clinical vaccination protocols with NY-ESO-1 protein not only focused on the treatment of existing cancer, but also to prevent further development of NY-ESO-1 positive cancers in vivo

    Activating mutation of the renal epithelial chloride channel ClC-Kb predisposing to hypertension

    No full text
    The chloride channel ClC-Kb is expressed in the basolateral cell membrane of the distal nephron and participates in renal NaCl reabsorption. Loss-of-function mutations of ClC-Kb lead to classic Bartter syndrome, a rare salt-wasting disorder. Recently, we identified the ClC-Kb(T481S) polymorphism, which confers a strong gain-of-function effect on the ClC-Kb chloride channel. The present study has been performed to explore the prevalence of the mutation and its functional significance in renal salt handling and blood pressure regulation. As evident from electrophysiological analysis with the 2-electrode voltage-clamp technique, heterologous expression of ClC-Kb(T481S) in Xenopus oocytes gave rise to a current that was 7-fold larger than the current produced by wild-type ClC-Kb. The prevalence of the mutant allele was significantly higher in an African population from Ghana (22%) than in whites (12%). As tested in 1 white population, carriers of ClC-Kb(T481S) were associated with significantly higher systolic (by approximately 6.0 mm Hg) and diastolic (by approximately 4.2 mm Hg) blood pressures and significantly higher prevalence (45% versus 25%) of hypertensive (> or =140/90 mm Hg) blood pressure levels. Individuals carrying ClC-Kb(T481S) had significantly higher plasma Na+ concentrations and significantly decreased glomerular filtration rate. In conclusion, the mutation ClC-Kb(T481S) of the renal epithelial Cl- channel ClC-Kb strongly activates ClC-Kb chloride channel function in vitro and may predispose to the development of essential hypertension in vivo
    corecore