1,477 research outputs found

    Teleparallel Theories of Gravity: Illuminating a Fully Invariant Approach

    Get PDF
    Teleparallel gravity and its popular generalization f(T)f(T) gravity can be formulated as fully invariant (under both coordinate transformations and local Lorentz transformations) theories of gravity. Several misconceptions about teleparallel gravity and its generalizations can be found in the literature, especially regarding their local Lorentz invariance. We describe how these misunderstandings may have arisen and attempt to clarify the situation. In particular, the central point of confusion in the literature appears to be related to the inertial spin connection in teleparallel gravity models. While inertial spin connections are commonplace in special relativity, and not something inherent to teleparallel gravity, the role of the inertial spin connection in removing the spurious inertial effects within a given frame of reference is emphasized here. The careful consideration of the inertial spin connection leads to the construction of a fully invariant theory of teleparallel gravity and its generalizations. Indeed, it is the nature of the spin connection that differentiates the relationship between what have been called good tetrads and bad tetrads and clearly shows that, in principle, any tetrad can be utilized. The field equations for the fully invariant formulation of teleparallel gravity and its generalizations are presented and a number of examples using different assumptions on the frame and spin connection are displayed to illustrate the covariant procedure. Various modified teleparallel gravity models are also briefly reviewed.Comment: v2: 72 pages, revised version, references added, matches published versio

    Models of light-like charges with non-geodesic world lines

    Full text link
    Massless particles in General Relativity move with the speed of light, their trajectories in spacetime are described by null geodesics. This is independent of the electrical charge of the particle being considered, however, the charged light-like case is less well understood. Starting with the Maxwell field of a charged particle having a light-like geodesic world line in Minkowskian space-time we construct the Maxwell field of such a particle having a non-geodesic, light-like world line. The necessary geometry in the neighbourhood of an arbitrary null world line in Minkowskian space-time is described and properties of the resulting electromagnetic field are discussed. The electromagnetic field obtained represents a light-like analogue of the Lienard-Wiechert field, which generalises the Coulomb field of a charge having a time-like geodesic world line to the field of a charge having an accelerated world line.Comment: 11 pages, 1 figur

    Dark spinor models in gravitation and cosmology

    Get PDF
    We introduce and carefully define an entire class of field theories based on non-standard spinors. Their dominant interaction is via the gravitational field which makes them naturally dark; we refer to them as Dark Spinors. We provide a critical analysis of previous proposals for dark spinors noting that they violate Lorentz invariance. As a working assumption we restrict our analysis to non-standard spinors which preserve Lorentz invariance, whilst being non-local and explicitly construct such a theory. We construct the complete energy-momentum tensor and derive its components explicitly by assuming a specific projection operator. It is natural to next consider dark spinors in a cosmological setting. We find various interesting solutions where the spinor field leads to slow roll and fast roll de Sitter solutions. We also analyse models where the spinor is coupled conformally to gravity, and consider the perturbations and stability of the spinor.Comment: 43 pages. Several new sections and details added. JHEP in prin

    Conformal Invariance in Einstein-Cartan-Weyl space

    Full text link
    We consider conformally invariant form of the actions in Einstein, Weyl, Einstein-Cartan and Einstein-Cartan-Weyl space in general dimensions(>2>2) and investigate the relations among them. In Weyl space, the observational consistency condition for the vector field determining non-metricity of the connection can be obtained from the equation of motion. In Einstein-Cartan space a similar role is played by the vector part of the torsion tensor. We consider the case where the trace part of the torsion is the Kalb-Ramond type of field. In this case, we express conformally invariant action in terms of two scalar fields of conformal weight -1, which can be cast into some interesting form. We discuss some applications of the result.Comment: 10 pages, version to appear MPL

    Angular size test on the expansion of the Universe

    Full text link
    Assuming the standard cosmological model as correct, the average linear size of galaxies with the same luminosity is six times smaller at z=3.2 than at z=0, and their average angular size for a given luminosity is approximately proportional to 1/z. Neither the hypothesis that galaxies which formed earlier have much higher densities nor their luminosity evolution, mergers ratio, or massive outflows due to a quasar feedback mechanism are enough to justify such a strong size evolution. Also, at high redshift, the intrinsic ultraviolet surface brightness would be prohibitively high with this evolution, and the velocity dispersion much higher than observed. We explore here another possibility to overcome this problem by considering different cosmological scenarios that might make the observed angular sizes compatible with a weaker evolution. One of the models explored, a very simple phenomenological extrapolation of the linear Hubble law in a Euclidean static universe, fits the angular size vs. redshift dependence quite well, which is also approximately proportional to 1/z with this cosmological model. There are no free parameters derived ad hoc, although the error bars allow a slight size/luminosity evolution. The type Ia supernovae Hubble diagram can also be explained in terms of this model with no ad hoc fitted parameter. WARNING: I do not argue here that the true Universe is static. My intention is just to discuss which theoretical models provide a better fit to the data of observational cosmology.Comment: 44 pages, accepted to be published in Int. J. Mod. Phys.

    Covariant gravitational dynamics in 3+1+1 dimensions

    Get PDF
    We develop a 3+1+1 covariant formalism with cosmological and astrophysical applications. First we give the evolution and constraint equations both on the brane and off-brane in terms of 3-space covariant kinematical, gravito-electro-magnetic (Weyl) and matter variables. We discuss the junction conditions across the brane in terms of the new variables. Then we establish a closure condition for the equations on the brane. We also establish the connection of this formalism with isotropic and anisotropic cosmological brane-worlds. Finally we derive a new brane solution in the framework of our formalism: the tidal charged Taub-NUT-(A)dS brane, which obeys the closure condition.Comment: 35 pages 1 fig; significantly expanded with (a) new closure condition on the brane, (b) discussion of anisotropic brane-worlds, (c) stationary vacuum space-times with local rotational symmetry including (d) a new tidal charged Taub-NUT-(A)dS brane solution; published version

    Classical big-bounce cosmology: dynamical analysis of a homogeneous and irrotational Weyssenhoff fluid

    Get PDF
    A dynamical analysis of an effective homogeneous and irrotational Weyssenhoff fluid in general relativity is performed using the 1+3 covariant approach that enables the dynamics of the fluid to be determined without assuming any particular form for the space-time metric. The spin contributions to the field equations produce a bounce that averts an initial singularity, provided that the spin density exceeds the rate of shear. At later times, when the spin contribution can be neglected, a Weyssenhoff fluid reduces to a standard cosmological fluid in general relativity. Numerical solutions for the time evolution of the generalised scale factor in spatially-curved models are presented, some of which exhibit eternal oscillatory behaviour without any singularities. In spatially-flat models, analytical solutions for particular values of the equation-of-state parameter are derived. Although the scale factor of a Weyssenhoff fluid generically has a positive temporal curvature near a bounce, it requires unreasonable fine tuning of the equation-of-state parameter to produce a sufficiently extended period of inflation to fit the current observational data.Comment: 34 pages, 18 figure

    Inflating wormholes in the braneworld models

    Full text link
    The braneworld model, in which our Universe is a three-brane embedded in a five-dimensional bulk, allows the existence of wormholes, without any violation of the energy conditions. A fundamental ingredient of traversable wormholes is the violation of the null energy condition (NEC). However, in the brane world models, the stress energy tensor confined on the brane, threading the wormhole, satisfies the NEC. In conventional general relativity, wormholes existing before inflation can be significantly enlarged by the expanding spacetime. We investigate the evolution of an inflating wormhole in the brane world scenario, in which the wormhole is supported by the nonlocal brane world effects. As a first step in our study we consider the possibility of embedding a four-dimensional brane world wormhole into a five dimensional bulk. The conditions for the embedding are obtained by studying the junction conditions for the wormhole geometry, as well as the full set of the five dimensional bulk field equations. For the description of the inflation we adopt the chaotic inflation model. We study the dynamics of the brane world wormholes during the exponential inflation stage, and in the stage of the oscillating scalar field. A particular exact solution corresponding to a zero redshift wormhole is also obtained. The resulting evolution shows that while the physical and geometrical parameters of a zero redshift wormhole decay naturally, a wormhole satisfying some very general initial conditions could turn into a black hole, and exist forever.Comment: 30 pages, no figures, accepted for publication in CQ
    corecore