32 research outputs found

    pyAmpli : an amplicon-based variant filter pipeline for targeted resequencing data

    No full text
    Abstract Background Haloplex targeted resequencing is a popular method to analyze both germline and somatic variants in gene panels. However, involved wet-lab procedures may introduce false positives that need to be considered in subsequent data-analysis. No variant filtering rationale addressing amplicon enrichment related systematic errors, in the form of an all-in-one package, exists to our knowledge. Results We present pyAmpli, a platform independent parallelized Python package that implements an amplicon-based germline and somatic variant filtering strategy for Haloplex data. pyAmpli can filter variants for systematic errors by user pre-defined criteria. We show that pyAmpli significantly increases specificity, without reducing sensitivity, essential for reporting true positive clinical relevant mutations in gene panel data. Conclusions pyAmpli is an easy-to-use software tool which increases the true positive variant call rate in targeted resequencing data. It specifically reduces errors related to PCR-based enrichment of targeted regions

    RUNX2-related metaphyseal dysplasia with maxillary hypoplasia : a rare skeletal disorder resembling SFRP4-related Pyle disease

    No full text
    Abstract: Metaphyseal dysplasia with maxillary hypoplasia with or without brachydactyly (MDMHB) is an ultra-rare skeletal dysplasia caused by heterozygous intragenic RUNX2 duplications, comprising either exons 3 to 5 or exons 3 to 6 of RUNX2. In this study, we describe a 14-year-old Belgian boy with metaphyseal dysplasia with maxillary hypoplasia but without brachydactyly. Clinical and radiographic examination revealed mild facial dysmorphism, dental anomalies, enlarged clavicles, genua valga and metaphyseal flaring and thin cortices with an osteoporotic skeletal appearance. Exome sequencing led to the identification of a de novo heterozygous tandem duplication within RUNX2, encompassing exons 3 to 7. This duplication is larger than the ones previously reported in MDMHB cases since it extends into the C-terminal activation domain of RUNX2. We review previously reported cases with MDMHB and highlight the resemblance of this disorder with Pyle disease, which may be explained by intersecting molecular pathways between RUNX2 and sFRP4. This study expands our knowledge on the genotypic and phenotypic characteristics of MDMHB and the role of RUNX2 in rare bone disorders

    Use of compound-specific nitrogen (d15N), oxygen (d18O), and bulk boron (d11B) isotope ratios to identify sources of nitrate-contaminated waters: a guideline to identify polluters

    No full text
    The use of various isotopes (d(15)N, d(18)O & d(11)B) to identify the sources of nitrate (NO3-) present in natural waters is described. Then a new guideline of how to apply the multi-isotope approach is presented. This guideline is written for policy makers and scientists who are involved in the different steps and processes related to nitrate contaminated waters including monitoring and data interpretation. NO3- is a common pollutant in water (both surface and groundwater). In several water bodies over Europe, point measurements identify that the level of this pollutant is higher than the reference value of 50 mgL(-1), defined by the European Union (EU) Water Framework Directive 2000/60/EC (European Parliament, 2000). This directive also states that all waters have to reach a "good status" (i.e., good quality) by 2015. This statement implies that EU member states have to take actions to achieve this goal. One of the major obstacles with NO3- contamination in water is the identification of the corresponding source(s) of pollution, a prerequisite for properly designing appropriate actions and remediation. Recent studies have proven the added value of analyzing compound specific isotopic signature (CSIA) of nitrate (both nitrogen (d(15)N), oxygen (d(18)O) and bulk boron (d(11)B) isotopic composition) to define the origin/source of NO3- in waters. This definition is possible because different sources of nitrate have distinct isotopic signatures. The recent EU-LIFE ISONITRATE project demonstrated the benefit of the multi-isotope approach, while the presented guideline to implement this method is one of the outcomes of this project. More details on the scientific results of ISONITRATE are available at http://isonitrate.brgm.fr/
    corecore