28 research outputs found

    Wrist – Digit III; Wrist – Hand (ADM muscle)

    No full text

    Conserved and Exapted Functions of Nuclear Receptors in Animal Development

    No full text
    The nuclear receptor gene family includes 18 members that are broadly conserved among multiple disparate animal phyla, indicating that they trace their evolutionary origins to the time at which animal life arose. Typical nuclear receptors contain two major domains: a DNA-binding domain and a C-terminal domain that may bind a lipophilic hormone. Many of these nuclear receptors play varied roles in animal development, including coordination of life cycle events and cellular differentiation. The well-studied genetic model systems of Drosophila, C. elegans, and mouse permit an evaluation of the extent to which nuclear receptor function in development is conserved or exapted (repurposed) over animal evolution. While there are some specific examples of conserved functions and pathways, there are many clear examples of exaptation. Overall, the evolutionary theme of exaptation appears to be favored over strict functional conservation. Despite strong conservation of DNA-binding domain sequences and activity, the nuclear receptors prove to be highly-flexible regulators of animal development

    Comparison of Interpolation Methods in the Diagnosis of Carpal Tunnel Syndrome

    No full text
    Diagnosis of carpal tunnel syndrome is based on clinical symptoms, examination findings, and electrodiagnostic studies. For carpal tunnel syndrome, the most useful of these are nerve conduction studies. However, nerve conduction studie can result in ambiguous or false-negative results, particularly for mild carpal tunnel syndrome. Increasing the number of nerve conduction studie tests improves accuracy but also increases time, cost, and discomfort. To improve accuracy without additional testing, the terminal latency index and residual latency are additional calculations that can be performed using the minimum number of tests. Recently, the median sensory-ulnar motor latency difference was devised as another way to improve diagnostic accuracy for mild carpal tunnel syndrome

    Letters to the Editor

    No full text

    Reply

    No full text

    Comparison of Interpolation Methods in the Diagnosis of Carpal Tunnel Syndrome

    No full text
    Background: Diagnosis of carpal tunnel syndrome is based on clinical symptoms, examination findings, and electrodiagnostic studies. For carpal tunnel syndrome, the most useful of these are nerve conduction studies. However, nerve conduction studie can result in ambiguous or false-negative results, particularly for mild carpal tunnel syndrome. Increasing the number of nerve conduction studie tests improves accuracy but also increases time, cost, and discomfort. To improve accuracy without additional testing, the terminal latency index and residual latency are additional calculations that can be performed using the minimum number of tests. Recently, the median sensory-ulnar motor latency difference was devised as another way to improve diagnostic accuracy for mild carpal tunnel syndrome. Aims: The median sensory-ulnar motor latency difference, terminal latency index, and residual latency were compared for diagnostic accuracy according to severity of carpal tunnel syndrome. Study Design: Diagnostic accuracy study. Methods: A total of 657 subjects were retrospectively enrolled. The carpal tunnel syndrome group consisted of 546 subjects with carpal tunnel syndrome according to nerve conduction studie (all severities). The control group consisted of 121 subjects with no hand symptoms and normal nerve conduction studie. All statistical analyses were performed using SAS v9.4. Means were compared using one-way ANOVA with the Bonferroni adjustment. Sensitivity, specificity, positive predictive value, and negative predictive value were compared, including receiver operating characteristic curve analysis. Results: For mild carpal tunnel syndrome. the median sensory-ulnar motor latency difference showed higher specificity and positive predictive value rates (0.967 and 0.957, respectively) than terminal latency index (0.603 and 0.769, respectively) and residual latency(0.818 and 0.858, respectively). The area under the receiver operating characteristic was highest for the median sensory-ulnar motor latency difference (0.889), followed by the residual latency (0.829), and lastly the terminal latency index (0.762). Differences were statistically significant (median sensory-ulnar motor latency difference being the most accurate). For moderate carpal tunnel syndrome, sensitivity and specificity rates of residual latency (0.989 and 1.000) and terminal latency index (0.983 and 0.975) were higher than those for median sensory-ulnar motor latency difference (0.866 and 0.958). Differences in area under the receiver operating characteristic curve were not significantly significant, but median sensory-ulnar motor latency difference sensitivity was lower. For severe carpal tunnel syndrome, residual latency yielded 1.000 sensitivity, specificity, positive predictive value, negative predictive value and area beneath the receiver operating characteristic curve. Differences in area under the receiver operating characteristic curve were not significantly different. Conclusion: The median sensory-ulnar motor latency difference is the best calculated parameter for diagnosing mild carpal tunnel syndrome. It requires only a simple calculation and no additional testing. Residual latency and the terminal latency index are also useful in diagnosing mild to moderate carpal tunnel syndrome
    corecore